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Abstract

This thesis addresses two challenges in extracting patterns from social data generated by modern

sensor systems and electronic mechanisms. First, that such data often combine spatial, temporal,

and relational evidence, requiring models that properly utilize the regularities of each domain. Sec-

ond, that data from open-ended systems often contain a mixture between entities and relationships

that are known a priori, others that are explicitly detected, and still others that are latent but

significant in interpreting the data. Identifying the final category requires unsupervised inference

techniques that can detect certain structures without explicit examples.

I present new algorithms designed to address both issues within three frameworks: relational clus-

tering, probabilistic graphical models, and kernel-conditional density estimation. These algorithms

are applied to several datasets, including geospatial traces of international shipping traffic and

a dynamic network of publicly declared supply relations between US companies. The inference

tasks considered include community detection, path prediction, and link prediction. In each case, I

present theoretical and empirical results regarding accuracy and complexity, and compare efficacy

to previous techniques.
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Chapter 1

Introduction

Sensor systems and electronic mechanisms are changing the ways in which we learn about human

behavior. Foundational work in the social and cognitive sciences analyzed small populations via

controlled experiments, or large populations via coarse surveys. Today, we can passively record

detailed behaviors of thousands of actors spread across the globe, along with spatial, temporal, and

relational data about the contexts in which they interact.

The potential for this data impacts almost every field of human endeavor. Scientifically, mass

data on human interactions have produced new insights into how we exchange information, transmit

diseases, and find partners for everything from business to reproduction. In commercial applica-

tions, social data can be mined passively to improve decisions such as product design, or integrated

directly into products such as social search, directed advertisement and recommendation systems,

geographic contextualization, and socially aware communication platforms. Governments and other

public policy institutions throughout the world have placed a high priority on analyzing social data

to better target social programs, improve mechanisms that share public resources, detect criminal

behavior such as tax-evasion, or inform national security efforts.

However, accessing this potential requires solving new challenges stemming from scale, structure,

and origin. In this thesis I consider datasets defined by three qualities which complicate analysis.

1. Size. The datasets are large and complex enough that detailed human analysis and trivial

algorithms are impractical.

2. Multi-modality. The datasets include spatial, temporal and relational information that must

be integrated in analysis.

1



2 CHAPTER 1. INTRODUCTION

3. Latent entities and relations. Entities not described explicitly in the data may improve

analysis.

The datasets I examine contain hundreds of thousands of records related to tens of thousands

of observed entities, where recent studies have analyzed specific properties of social structure in

systems with over a billion entities [57] [8]. However, size and scalability are nonetheless a sig-

nificant concern. Studies at the largest scale make use of massively parallel architectures designed

to answer specific questions, whereas the algorithms in this thesis are concerned with enabling

exploratory analysis at its early stages. A primary objective of this thesis is to present algorithms

which can extract as much insight as possible from medium-sized datasets using a single commodity

workstation.

Multi-modality is a feature of the data because our activities are influenced and constrained

by spatial, temporal, and relational factors. Information in all three domains may be relevant to

patterns of interest. Specialized techniques abound for modeling the regularities found in each

domain. For example, fast algorithms exist for detecting clusters or density estimates in geospatial

data, cyclical behavior and autocorrelation in time series data, and communities or central nodes

in relational data. However, when applied independently these models cannot detect patterns that

span domains. In section 1.1, I introduce the goals and themes which guide the work on integrated

models in the remainder of the thesis.

The presence of latent entities and relations arises from uncontrolled data collection. Outside

of controlled experiments (and often within), human systems lack clear boundaries which isolate

the effects being studied. This is compounded by the fact that data-driven studies often make use

of evidence collected in a broad sweep or with another purpose in mind. In such data, entities and

relationships that are known a priori or detected directly likely interact in significant ways with

others that are visible only through their effects. In section 1.2, I discuss the objectives I attempt

to meet regarding the identification of such latent entities.

This thesis introduces several new algorithms intended to address both challenges in an inte-

grated way, and in doing so extends three prior threads of research in multidomain and unsupervised

learning. Clustering is the unsupervised search for hidden labels or partitions that explain observed

attributes of data. In section 2.2, I review methods based on hierarchical clustering, expectation

maximization, and more recent multi-membership models as applied to spatial and relational data.

For the integration of parametric models capturing regularities in various data domains, I rely

primarily on probabilistic graphical models, which I provide background on in section 2.3. Finally,

to model relations where a parametric form is not known in advance, I build on the nonparametric
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kernel conditional density estimation techniques introduced in section 2.4.

Development of the algorithms produced in this thesis was motivated primarily by the analysis

of two new and complex datasets. The first tracks cargo vessel movements from port to port

over a period of several days, in conjunction with attributed data about the vessels and their

ownership relations. The second is a dynamic network between US publicly traded companies,

tracking business relationships disclosed under regulatory requirements. Where appropriate, I also

compare to canonical “standard” datasets from prior literature. All datasets used are introduced

in detail in chapter 3.

I organize exploration of the datasets and research threads listed above in relation to three

specific analysis tasks. In chapter 4, I adapt clustering methods to detect fuzzy, overlapping com-

munities within social network and event attendance data. In chapter 5, I introduce an expectation-

maximization based message passing algorithm for probabilistic graphical models to detect probable

destinations in geospatial path data. In chapter 6, I present a dyadic variant of kernel-conditional

density estimation for predicting missing or future links in attributed network data.

Finally, in chapter 7, I review results and contextualize them with respect to ongoing research.

By way of summary, I provide a brief manual for a practitioner looking to select among the methods

introduced or otherwise touched upon in this thesis.

1.1 Spatial, Temporal and Relational (STR) Data

In a popular folk tail, a group of blind men encounter an elephant. Grappling with different

parts of the beast, they name it variously a rope (for its trunk), a fan (for its ears), a column

(for its legs), and a spear (for its tusks). Students of human interaction, or any complex system,

should relate to this story. When analyzing systems too large or complex to model accurately in a

controlled environment, we are often limited to data collection schemes that observe a single aspect

of the system, such as a set of physical measurements, or records of a single kind of transaction or

communication. In addition to being easier to collect, these datasets more plausibly admit useful

assumptions (for example that they are independently and identically distributed) which would be

difficult to stomach if connecting data were collected. As a result, domain-spanning interactions

remain, like the elephant, undetected. The algorithms introduced in this thesis are intended to

detect cross-domain patterns in datasets where spatial, temporal and relational (STR) data can be

connected.

A spatial, temporal or relational setting is defined by its regularity, such as the ordering of a
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timeline, the distance metric of a space, or the recurrence of relations in a network. Learning STR

patterns in human systems means establishing a correspondence between this inherent regularity

and statistical regularity found in the data. For example, we might expect that individuals living

near each other speak the same language, or that ships belonging to the same company carry similar

cargo. In section 2.1, I briefly overview the types of regularity associated with each data domain,

and how they relate the mutual information structures in various models.

Our expectation of these correspondences is supported by our experience that constraints in one

aspect of our location, schedule, affiliations or attributes influence our decisions in another. The

correlation between space and language listed above might be driven by many choices of individuals

desiring to communicate with those nearby to adopt a common language. In different circumstances,

the same constraint might produce a similar pattern via an inverted process: an immigrant, needing

to communicate and constrained by knowing only a foreign tongue, might choose to locate near

other immigrants. These processes may be homophilic, as above, or assortative, such as the need

of a corporation to do business with companies that occupy different roles in the supply chain.

Prior beliefs regarding the processes described above are a necessary part of domain modeling.

However, when analyzing STR data from human systems it is very uncommon to enter with confi-

dence regarding the exact structure of patterns produced, or the ways in which they interact. The

selection of mixed-membership, graphical, and nonparametric models for this thesis is intended to

relax the level of prior confidence necessary, by allowing a degree of model selection to be performed

during the data fitting process. I refer to this process as localization, because the outcome is a map-

ping between the spatial, temporal and relational setting of the data and the structure of mutual

information within the data. The primary goal of this thesis, as relates multi-domain analysis, is to

shift part of the burden of multi-domain modeling away from an analyst’s prior beliefs and toward

a data-driven model selection process.

1.2 Unsupervised Learning

Any data analysis task involves consideration of boundary effects. Have we collected enough data to

positively identify patterns? Has our collection process biased us toward detection of some patterns

over others?

Human systems data are unusually high-risk in this regard. Almost nothing about individual

behavior is actually individual: we are influenced by those we interact with, those we observe

passively in our physical environment, and memories we carry over from past interactions. Our

response to these interactions tends to sort us, so that it is almost impossible to observe groups
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of individuals that don’t have important factors linking their behavior [82]. Efforts to enumerate

these linking factors are easily confounded by our tendencies to form and dissolve affiliations, change

environments, and to forget or exchange memories [101].

The collection of data from sensor systems and electronic mechanisms further complicates these

challenges. Technology and expense limit the types of information we can extract from sensor

systems, and the need to attract participation limits the types of information we can extract from

electronic mechanisms. Since data collection apparatus are difficult to deploy and take time to

collect a critical mass, systems are increasingly designed with a “shotgun” approach aimed at

adequately supporting many future analyses but specifically supporting none. Datasets such as the

ones analyzed in this thesis often enjoy a “second life”, in which they are analyzed for purposes

having little to do with those for their original collection.

The net effect of these challenges is that it is rare to begin analysis on human STR data with

confidence that a dataset explicitly records all of the entities that are relevant to understanding the

patterns within. Inference of these entities is a desirable intermediate step to detecting patterns.

In machine learning, this task is referred to as unsupervised learning, because the analyst cannot

provide any ground truth regarding entities she herself does not know to exist.

In the previous section I discussed the process of localization, where the mutual information

structure of a model is adapted to data. The introduction of latent entities is my primary means

of accomplishing that (bandwidth estimation in nonparametric regression is a second one). At one

extreme, when no latent entities are proposed, the initial model is entirely responsible for the mutual

information structure of the data. At the other, proposal of infinite latent entities serves as a kind

of deus ex machina in which all variation in a dataset can be explained by latent entities, analogous

to overfitting in a parametric model. The main challenge in applying unsupervised techniques is

achieving a balance on this spectrum by negotiating the tradeoff between the number of latent

entities proposed and the accuracy of fit to the data. The guiding principle applied is Occam’s

razor, formally instantiated through criteria such as minimum description length (MDL) [15] [47]

or a Bayesian priors regarding the population of latent entities [13].

Unsupervised learning is most often discussed in the context of clustering, which I review in

section 2.2. The two unsupervised algorithms introduced in this thesis each relax a commonly found

constraint in other clustering algorithms. In chapter 4, I consider multi-membership clusters within

a relational setting, where clustering typically involves strict partitioning. In chapter 5, I perform

strict clustering in a way that bridges spatial, temporal and relational domains. The goal, as usual,

is to enable an analyst to precisely express the types of latent entities she suspects, and how they

might interact with the rest of the data, while simultaneously providing the tools to achieve the
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balance described above.



Chapter 2

Background and Preliminaries

2.1 STR Modeling

2.1.1 Temporal Data

The weakest temporal setting is a partial ordering, in which an order is defined between some

observations while others are ambiguous. Partial orderings often arise when the measurement or

representational accuracy of time is limited, when complete orderings on two datasets are integrated

(such as a merge of systems logs), or when orderings are recovered opportunistically from other

data, such as references between papers.

Full orderings allow a complete indexing of events, permitting definition of simple regularities

such as Markov assumptions [89]. A model based strictly on ordering makes minimal use of the

continuity of time, relying instead on a well defined state space to define locality for each data

point. This reliance might make it unusually sensitive to missing data or false ordering, and makes

it impossible to detect effects that are mediated by the length of a time interval between events.

Fully ordered time measurements are annotated in this thesis as variants of t ∈ IN.

The inclusion of inter-arrival times, which I annotate with variants of δ, allow time-dependent

relaxations of Markov assumptions, such as Gaussian processes or time decay models [5]. When all

inter-arrival times are known, time measurements are placed on an absolute timeline, on which we

annotate points with variations of t ∈ IR.

Distributions of temporal measurements can be studied independently (e.g. with point process

models [50]), but this thesis considers only temporal relations which associate a time with additional

labels or measurements. The simplest type of temporal relation is an event, meaning a pinpoint

7
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observation or measurement, such as the timing of a transmission or a temperature reading. I

annotate an event as a tuple e = 〈t,x〉, where t is the temporal part of the relation and x contains

everything else.

Models of mutual information between events most commonly presume that events closer to-

gether are more closely related. One way of formalizing temporal closeness’ impact on related data

is by introducing a decay function.

Definition 1 A decay function c : IR+ → [0, 1] is an indicator of mutual information such

that given events 〈t,x〉 and 〈t′,x′〉, I(x,x′) = f(c(|t′ − t|)). Furthermore, c must be montonically

decreasing in its parameter.

The function f which relates c to I is model specific. For example, in a Gaussian process

c indicates the correlation between real-valued associated measurements x1 and x2. In kernel

regression, c is the coefficient on a weighted average, whose denominator is determined by the

distribution of other observed points. Some classes of common decay functions include window

decay, polynomial decay and exponential decay.

Definition 2 The window decay with bandwidth β ∈ IR+ relates equally all points within a

certain distance of each other.

cw=β(δ) =

{
1 : |δ| ≤ β
0 : |δ| > β

Definition 3 The polynomial decay with degree d ∈ IN relates points inversely proportional to

the square of temporal distance.

(2.1) cp=d(δ) = δ−d

Definition 4 The exponential decay with scale λ ∈ IR+ states that mutual information between

points decays with a halflife inversely proportional to λ

(2.2) ce=λ(δ) = e−λδ

In cases where time has a seasonal effect, or where measured time is an imperfect proxy for some

other ordered process, it can be useful to adopt a temporal convolution function in conjunction with

some decay function to describe mutual information.
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Definition 5 A temporal convolution function v : IR+ → IR+ in combination with decay

function c indicates mutual information of 〈t,x〉 and 〈t′,x′〉, according to I(x,x′) = f(c(v(t) −
v(t′))).

Use of a temporal convolution function is analogous to adopting a non-standard distance metric,

as described below.

Another way of using temporal structure is to use it to derive other relations. Event information

may be collected in interval summaries describing, for example, the of events or average value of

a measurement in a given time interval. Electronic mechanisms in which transactions update a

persistent state often collect state transition data, such as the logs of writes to a database. Hidden

or partial state models such as [95] relate observed events, interval summaries, or state transitions

to a transition model which includes some latent, unobserved state.

2.1.2 Spatial Data

Many concepts regarding continuous time can be generalized for continuous spatial data. Events

correspond to named spatial points, intervals to regions, and a state space with transition points to

a full partitioning. Ordering and inter-arrival time must be replaced by more complex definitions

of adjacency and distance, which are the subjects of most descriptions of spatial regularity.

A distance function d : Rn,Rn → R measures path length between any two points in an n-

dimensional space. A partial ordering on any set of points can be produced based on each of

their distances to a common reference point. Many applications of distance functions rely on the

additional constraints satisfied by a distance metric.

Definition 6 A distance metric is function d : Rn,Rn → R satisfying constraints of non-

negativity (d(x,y) ≥ 0), discernability (d(x,y) = 0 → x = y), symmetry (d(x,y) = d(y,x)),

and subadditivity (d(x, z) ≤ d(x,y) + d(x, z)).

Some of the distance metrics used in this thesis include the Cartesian, Manhattan, and great

circle distances.

Definition 7 The Cartesian distance between two vectors in IRn is given by

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2

.
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Definition 8 The Manhattan distance between two vectors in IRn is given by

dm(x,y) =
n∑
i=1

| xi − yi |

Definition 9 The great circle distance approximates the length of the shortest path along the

surface of the Earth between a pair of latitude-longitude coordinates.

(2.3) dg(x,y) = 6371 km ∗ 2 arcsin

(√
sin2(

xlat − ylat
2

) + cosxlng ∗ cos ylng ∗ sin2(
xlng − ylng

2
))

)

Distance may also be defined in abstract spaces, such as coordinate spaces based on two or more

measured attributes of an entity. A frequent approach in these spaces is to use a traditional metric

(such as Cartesian) on normalized versions of these variables. The proper method of normalization

is a domain and model-specific decision.

A set of points under a given distance metric possess a convex hull, the space enclosed by all

minimum paths and surfaces between them. Two hulls or other regions which share a surface point

are called adjacent, allowing a binary relationship to be extracted from spatial data. If a distance

metric is present, adjacency among a set of points rather than regions can be defined using Delauney

triangulation. Two points are adjacent under this definition if their Voronoi cells – the region, for

each point, which is closer to it than any other point in its set – abutt. This definition has been

used in models of shared information between irregularly distributed sensors [62].

Distance is often invoked with the expectation of similarity between nearby points. This can

occur in data associated with processes where location indicates a common origin, where similar

entities directly attract each other, or where some sorting influence pushes entities with certain

characteristics to certain locations. One way to encode this concept is by pairing a distance func-

tion with a decay function as described in the previous sections. Alternatively, distance can be used

to compute adjacency or common enclosure to achieve a binary relation associated with similarity.

Concepts of distance, enclosure, and density are also important in spatial clustering (discussed

further in later sections), another way in which relational data can be inferred from spatial config-

uration.

Spaces that are physically situated but exceptionally regular, such as a chess board, or especially

convoluted distance functions, such as mass transit transportation time, can often be more efficiently

represented in relational form.
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2.1.3 Relational Data

In the sections above, I’ve described how associating data with a place or time implies relations such

as “before”, “after”, “within”, and “adjacent” to data associated with other points or sets of points.

In relational data, these kinds of associations are recorded explicitly. Rather than from temporal

logic or the geometry of a distance function, regularity arises from a relational schema describing

recurring patterns of association. These relations can be arbitrary in number and complexity,

ranging from explicit representations of distance functions between points to complex relations

involving dozens of entities.

Mathematically, relational algebra generalizes those applied to finite-dimensional spaces or time-

lines, meaning that any kind of spatial or temporal regularity is in fact a special class of relational

regularity. A useful property of these special cases is that they allow us to succinctly describe

an infinite variety of entities and relations not observed in data. For example, the presence of a

coordinate system implies the existence of an infinite space of points not explicitly listed in the

data, and the presence of a distance function allows us to consider the space between them. I use

relational data to refer to data in which entities and relations are explicitly enumerated, such as

the entries in a relational database. The existence of additional entities or the values of unobserved

relations might be inferred by a model (these are primary goals of the algorithms I present), but

they are not a feature of the relational setting.

In this thesis I divide relations into three main categories. Tabular relations encode the asso-

ciation of an entity with its attributes - for example, the demographic characteristics of an agent.

Each instance of a tabular relation describes a single entity. Unimodal relations encode relation-

ships between like entities, such as pairwise friendships between individuals. The ability to string

unimodal relationships together into paths, trees and other connected structures enables the search

for certain kinds of regularity. Bimodal relations cover interactions between non-alike entities, such

as the association of an individual with a group he or she belongs to. Multimodal relations of more

than two entities are discussed in this thesis by treating each such association as a new entity.

Tabular relations are the most traditional subject of statistics. The most typical assumption

regarding mutual information between instances of tabular relations is that it is mediated by some

external parameters, conditioned on which the values observed for each entity are independent.

The algorithms in this thesis presume that other relations also influence the structure of mutual

information. I notate tabular relations by assigning a vector for each attribute whose index indicates

the entity with which a value is associated. For example, ai might indicate the age of the i’th

individual.
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Unimodal relations have been studied in mathematics since the publication of Euler’s Seven

Bridges of Kronigsberg. The relation considered in that publication was spatial adjacency, with the

relational formalism adopted as a tool for considering possible paths. Graph theory has since been

broadly applied to modeling of physical flows, optimal topologies, and formal logics.

Sociologists have long considered unimodal relationships in human systems under theory that

social phenomena are neither emergent from the properties of individuals nor some abstract social

entity, but from the patterns of relations among people [106]. This field is referred to as social

network analysis. Early social network analysis focused primarily on graph theoretic definitions

and measurements that could be used to summarize the position of an individual or group within a

network [40], and relating these definitions to observed sociological effects. The recent availability of

large scale, high quality data on relations between individuals as attracted interest from sociologists,

physicists, and computer scientists in describing generative stochastic processes [107] [108] [69]

which explain common patterns in network configurations observed “in the wild”.

Perhaps because their interpretation differs more from context to context, bimodal realtion-

ships have not attracted dedicated communities in the same way that unimodal relations have. A

specific class which has been frequently studied are containment relations, such as those between

an individual and group, or those between a document and a word [14].

I notate unimodal and bimodal relationships as matrices. For example, if R is a bimodal relation

between individuals and organizations, rij ∈ 0,1 might might indicate whether individual i is a

member of organization j. When a relationship is binary, as above, compound relations can be

acheived via linear algebra. For example, C = RRt would give the comembership relation between

two individuals, such that ci is the number of organizations in which they share membership.

Unlike distance metric values, a higher value on a weighted relation conventionally indicates a

greater association. When a relation has at most one value per column, we say that it is many-

to-one, if it’s transpose has that property we say it is one-to-many, and if both are true then it is

one-to-one. In this thesis, I do not consider relations with negative weightings, which complicate

assumptions of transitivity built implicit in some algorithms.

2.1.4 Frameworks for STR analysis

Unifying frameworks for the study of spatial, temporal and relational data have developed indepen-

dently within several academic communities. Here I briefly profile and compare three communities

on which the work in this thesis builds.
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• Dynamic network analysis [22] (DNA) emerged from the social network analysis commu-

nity as a way of extending that field’s unimodal analysis to incorporate multiple networks,

entity types, change over time, and additional contextual information. A dynamic network

dataset is termed a metanetwork, which may contain multiple nodesets representing different

kind of entities. Tabular data about these entities is recorded as attributes associated with

each node, and may contain spatial information such as latitude and longitude. Relations are

termed networks, may be unimodal (also called square in reference to the matrix represen-

tation of the relation) or bimodal, and may be binary or weighted (conventionally a greater

weight means a stronger connection rather than a greater distance). Temporal data is repre-

sented via a state transition model, where timestamped deltas describe changes observed in

the network.

An aspect that distinguished DNA sfrom the other disciplines described below are strong

links to sociological literature, and in particular the social network analysis and agent-based

modeling communities. To better standardize analysis between datasets, dynamic network

analysis aimed at the sociological community often employs a standardized schema including

entity categories such as “agent”, “organization”, “task”, “knowledge”, “place” [22]. Fol-

lowing from its origins, a significant topic in dynamic network analysis the computation of

node and network level measurements, and the extension of previous social network analysis

measurements into the multimodal dynamic network setting. Work aimed at the agent-based

modeling community includes simulations that use dynamic networks as input [23] and simu-

lations that produce dynamic network data as output [105]. Other topics of study include the

interplay between spatial clustering and network clustering [98] and the analysis of potential

paths through a network based on those observed.

• Statistical relational learning [44] (SRL) emerged from the probabilistic graphical model

wing of the statistical machine learning community, as a way of tackling common inference

problems related to information in databases. A distinctive motivation within this community

is the proper handling of a variety of types of erroneous data, such as duplicated entities [10]

and missing relationships. SRL typically involves explicit modeling of mutual information in

a dataset in the form of relational Markov networks [112] or Markov logic networks [102].

• Data mining has its origins in database management, and carries over that field’s focus

on scale, as well as an emphasis on concepts defined algorithmically (as opposed to SRL’s

probabilistic framework or DNA’s links to other fields of behavioral study). Major lines of

research include analysis of self-similarity in networks [9], as well as the factors which may

produce or confound it [69]. An ongoing challenge task within this field is the development
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of generative models which replicate the properties observed in real world networks [67].

2.2 Clustering

Clustering is the inference of a hidden relation between an observed class of entities and a second,

unobserved class, often a group entity indicating common origin or association. Occam’s razor

argues against presuming entities beyond those necessary to explain experience; the necessity that

motivates clustering is generally an unusual similarity between some subsets of observed entities

relative to the general population. Since no instances of the cluster relation can be observed, its

inference is an example of unsupervised learning.

Given n entities and k clusters, we can describe the clustering relation as an an n× k matrix,

X, where xij indicates the member of relation between observed entity i and latent cluster j. The

number of clusters k may be known in advance or inferred during clustering, as we discuss later

in this chapter. In general X is nonnegative, but it may be either binary or weighted or represent

of varying degrees of membership. If there is at most one nonzero entry per row, X is a strict

partitioning of the observed entities, and is sometimes represented as a vector x where xi indicates

the cluster assignment (the index of the nonzero column). Otherwise we may say it is a soft

clustering admitting multiple (if rows can have multiple entries) or overlapping (if columns can)

memberships. In general, we seek clusters whose members demonstrate some kind of similarity in

observable parameters. If there are m such parameters, we record them in an n × m matrix Y,

where the row vector yi gives the observed parameters of the i’th entity.

2.2.1 Defining Similarity

The similarity sought among members of the same cluster may be defined in various ways to identify

different kinds of latent groups. Clustering based on relational data often seeks cohesive groups

with an increased concentration of internal direct links or short paths. An alternative framework,

structural similarity, groups nodes based on their relations to other points, such as set of network

nodes with correlated relations [17]. I generally focus on the former pattern, but the assortative

pattern is discussed further in the sociological context of structural roles in chapter 4.

In spatial or temporal clustering, a distance metric is typically employed to identify sets of

nearby points in an otherwise sparsely populated space. Distance might be measured directly

between co-clustered points, used to define a convex hull for density maximization [63], or applied

between individual points and some summary point [80]. The concept of a summary point or
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distribution may be generalized to allow clusters with adaptive shapes or distributions [43]. This

“cluster-as-emitting-distribution” approach can be applied to detect many kinds of spatial, temporal

and relational patterns, and is the primarily approach discussed in this thesis. I formalize this for

strict partitionings in the following definition, which introduces a k × d matrix Θ containing d

latent parameters for each of the k clusters.

Definition 10 A latent cluster likelihood L(Y | x,Θ) relates the probability of observing entity

attributes Y given latent membership assignments x and the unobserved cluster parameters Θ. The

likelihood function must have the properties that yi ⊥ x,Θ | θxi
. In other words, the likelihood of

instance properties depends only on the parameters of the associated cluster.

Proposition 1 Any latent cluster distribution can be rewritten in a factorized form

L(Y | x,Θ) =
n∏
i=1

l(yi | xi, θxi
)

.

2.2.2 Clustering Algorithms

The most constrained cluster analysis, classification of n entities into k discrete groups, admits

nk possible strict clustering relations, far too many to explore exhaustively in nontrivial datasets.

Score based cluster objectives exhibiting near submodularity or supermodularity can be tractably

approximately optimized [81] using variants of hierarchical clustering e.g. [76] or by recursive par-

titioning e.g. [78].

When a latent cluster distribution is introduced, clustering can be approached as the estimation

of hidden cluster parameters and optimized using the expectation maximization (EM) algorithm.

Dempster et al. define EM [32] as a very general method for determining maximum likelihood

parameter estimates when some data are missing. Rather than performing often intractable inte-

grations over the possible assignments to hidden variables, EM alternates between computing their

expected values and computing likelihood maximizing parameters given those values.

Clustering is one of the exemplary problems analyzed in [32], where it is introduced as determin-

ing a finite mixture model in which unobserved categorical variables indicate the source component

distribution for each observed point. The expectation step in this case amounts to determining the

probability with which each point originates from each cluster given its current parameters, whereas

the maximization step optimizes those parameters given the current expectations. The algorithm
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terminates when it reaches a fixed point, detected by threshold of stability in the parameters. It is

sketched out briefly below.

Algorithm 1 Soft EM Clustering

Require: Y {observed entity properties}
Ensure: Θ {optimized cluster parameters}
Ensure: X ∈ IRn×k {cluster relation indicating probability of origin}

Initialize X s.t. ∀ni=1

∑j
j=1 xi,j = 1

repeat

X′ ← X

Θ← argmaxΘ L(Y | X,Θ)

X← argmaxX L(X | X,Θ)

until X′ ≈ X

Since each step increases the likelihood of observed data, each global maximum likelihood

configuration is a fixed point of the algorithm [91]. However, there may be many other local

maxima which halt the progress of the algorithm, making it sensitive to initial conditions. For

applications where a local maximum is sufficiently informative, this may be irrelevant. A common

property of latent cluster distributions is that hidden cluster attributes can be precisely tuned to

give extremely high likelihood when responsible for only a small set of observed entities [79]. This

propensity for overfitting can induce many poor-quality local minima for the EM algorithm, and

must be handled by some combination of initialization procedures and cluster priors in a domain

and model specific fashion.

Algorithm 1 is labeled “soft” because its output is a distribution over clusters for each entity.

Converting this to a strict maximum a posteriori estimate of group assignments and parameters is

nontrivial, as the joint probabilities of assignment may be different from the marginals estimate re-

vealed by EM. An alternative “hard” EM clustering algorithm is given by replacing the expectation

step with an assignment of each entity to its optimal cluster.

Because each step improves the overall likelihood of the data, algorithm 2 belongs to the gener-

alized expectation maximization (GEM) algorithm class defined in [32], and because each iteration

updates a subset of the hidden variables and cluster parameters it belongs to a subclass known

as expected conditional maximization (ECM) [83]. ECM algorithms can achieve improved perfor-

mance when calculating the maximum configuration of one or a few parameters is simpler than

doing so for the entire set. Under a traditional EM algorithm, significant computation time is

spent re-computing marginal distributions for variables that are relatively stationary between iter-



2.2. CLUSTERING 17

Algorithm 2 Hard EM Clustering

Require: Y {observed entity properties}
Ensure: Θ {optimized cluster parameters}
Ensure: x ∈ {1, 2 . . . k}n {cluster assignment vector}
∀ni=1ci ∼ Uniform({1, 2 . . . k}) {random initialization}
repeat

x′ ← x

for j = 1 to k do

θj ← argmaxθ
∏
i:xi=j

l(yi | xi, θj)
for i = 1 to n do

xi ← argmaxj l(yi | xi = j,Θj) {update entity assignments}
end for

end for

until x′ = x

ations, but with the use of clever data structures ECM algorithms can concentrate computation on

parameters whose maximal assignment is changing. Meng et al. show that ECM algorithms can

achieve the same convergence guarantees as EM algorithms when updates are unconstrained, in the

sense that all cluster parameters may be optimized freely within each iteration (i.e. between checks

for convergence). However, hard-EM clustering as given above constrains parameter updates to

those associated with a reassignment of an entity, weakening its convergence criteria and making

it theoretically more vulnerable to “bad” local maxima.

In chapter 4 I compare performance on several EM variants, introduce an algorithm applying

EM to an infinite mixture model, and consider the performance impact of an adaptive update

schedule. This approach is generalized for use in graphical models in chapter 5.

2.2.3 How Many Groups?

In many clustering problems, measures of internal cluster cohesion decrease as additional entities

are explained by a latent group. This creates a tension between the desire to summarize a dataset

with the minimum number of groups and the desire for each group to be maximally representative of

its members. In some cases the grouping objective is naturally maximized with a number of groups

that can be determined algorithmically, as with Newman’s modularity score. In other cases, when

group entities are intended as useful abstractions, group granularity is more a matter of preference or

suitability to application than of correctness. For that reason, many clustering applications require
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user input in determining group quantity or sizing. This might involve specifying an explicit number

of groups (as in k-means clustering), selecting an “elbow point” in a cohesion scoring function, or

via a selection process where a user dynamically navigates clusters at various granularities [98]. An

alternative approach, discussed below and extended in this thesis, is to involve both data and prior

preference in determining group granularity within a probabilistic framework.

In a latent cluster distribution, when a number of clusters k is known or presumed a priori,

X is an n × k matrix, or in vector notation for a strict partitioning x ∈ {1 . . . k}n. If Θ has

a finite number of parameters per cluster, then the entire latent cluster distribution has a finite

parametric form. In cases where an unknown number of hidden entities are present, the problem

takes on nonparametric qualities or, more precisely, an infinite parametrization. The latter, due

to Beal [11], involves infinite but sparsely populated X and Θ. Intuitively, specifying a prior

distribution on the the degree of sparsity (i.e. the number of nonzero rows or columns) in this

parameterization allows us to express prior beliefs or preferences regarding the number of groups.

One such prior is the Chinese restaurant process, or CRP. Briefly, the CRP considers a stream

of entities being inserted into partitioned sets. Each entity is inserted into an existing set with a

likelihood proportional to the set’s size, and begins a new set with likelihood proportional to an

innovation parameter, α.

(2.4) P (ci = k | x1...k−1;α) =


∑i−1
j=1 I(xj=k)

i−1+α : 1 ≤ k ≤ max(x1...i−1)
α

i−1+α : k = 1 + max(x1...i−1)

0 : else

The innovation parameter has a natural interpretation as the coefficient of logarithmic growth in

the expected number of clusters as more data points are observed (E(max(x)) = α log n), and the

tendency of individuals to prefer larger partitions mirrors preferential attachment effects observed

in many datasets. CRPs have been adapted for use as priors in mixture models [13], as well

as extended to allow for soft clustering, where it is sometimes referred to as the Indian buffet

process [46]. Both are described in further detail in chapters 4 and 5 where I adapt them for

use in community detection and for hidden variables with an unknown number of categories in

probabilistic graphical models.

2.3 Probabilistic Graphical Models

Probabilistic graphical models (PGMs) have emerged as an effective framework for modeling pat-

terns across spatial, temporal and relational domains, both individually and in conjunction. This
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is due to their ability to concisely describe regular patterns of variable dependence induced by an

STR environment. Examples include conditional random fields (CRFs) with topologies derived

from the physical layout of sensors [66], dynamic Bayes nets [89] and CRFs [109] whose structure

follows the flow of time, and relational Markov networks (RMNs) with structures templated on

links in a relational database [112]. In this thesis, I build on existing work using PGMs to model

these domains, and address a problem that reduces their applicability in some settings.

I will concentrate on discriminative PGMs, in which variables can be partitioned into those that

will be observable at time of inference and those that will remain hidden. Discriminative PGMs are

typically trained by optimizing model parameters against training data for which values of hidden

variables have been provided (though some existing alternatives are discussed in section 2). For

many real-world STR systems, however, proper training data can be impossible or cost prohibitive

to obtain. This is particularly true in analyzing covert systems, where labels for hidden variables

(for example, affiliation with a secret organization) cannot be accurately observed at any price.

There also exist interesting tasks in which the objective is hidden by definition, such as identifying

communities in a network. Rapidly evolving tasks, such as identification of trendy destinations in

a busy city, pose another kind of challenge as labeled data may become obsolete soon after it is

obtained. Finally, there are exploratory settings in which supervised training might be feasible in

the final deployment of a learning system, but is cost prohibitive during development.

One goal of this thesis is to show that the modeling flexibility of PGMs can be practically applied

to spatial, temporal and relational settings with important latent variables through the introduction

of expectation maximizing belief propagation (EMBP) algorithms. Combining EM clustering with a

message passing approach, these algorithms conduct unsupervised learning to produce a hypothesis

that is consistent with the model structure and observed variables. In contrast with existing

Bayesian approaches to estimating or sampling posterior distributions of individual variables or sets

of interest, my algorithms are designed to identify only a single, consistent hypothesis regarding all

variable values. While acknowledging limitations of this objective, I argue that it enables worthwhile

performance improvements and is potentially more useful to analysts than a more thorough but

difficult to interrogate result.

In chapter 5, I describe a class of undirected PGMs whose model parameters allow efficient

updates and converge toward a fixed point when variable assignments and model parameters are

optimized incrementally. I also define message passing algorithms that conduct these updates

efficiently. It has been shown in other belief propagation schemes that the schedule by which

messages are updated is an important factor in performance [38], and early experiments with EMBP

have confirmed that an asynchronous schedule improves both performance and convergence [30]. I
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will further explore this by testing an approximate-residual prioritized schedule following [110], as

well as a novel online schedule which prioritizes updates on variables relevant to ongoing inference

as new data arrives.

Consider an integer vector x ∈ Zn consisting of random variables, each of which can take one

of at most k discrete states. We will use the abbreviation Znk as a shorthand for the set of possible

assignments to x. P (x), the joint PMF over all elements of x, can be represented by a real vector

w ∈ ∆d, whose entries enumerate the probability of each combination of assignments to x. This

naive representation would require d = |Znk | = kn parameters1 , too many to store, learn from data,

or conduct inference from unless n is trivially small. A key goal of any PGM is to provide a more

scalable representation of P (x) by identifying a set of functions with smaller domains which can be

reconstructed into the original PMF, or a useful approximation. In this section I describe several

specific representational tricks on which my thesis builds. Since my primary goal is to introduce

terms and notation, I defer to [61] for a more thorough discussion.

Markov random fields. Arguably the simplest graphical model is the Markov random field

(MRF), in which each node is a variable and edges describe probabilistic dependencies. The struc-

ture of the field is described by a symmetric binary n×n adjacency matrix N indicating probabilistic

dependence between variables. I will sometimes refer to N through an equivalent function N that

maps a variable to a set of adjacent variables, which constitute the variable’s Markov blanket:

(2.5) ∀x,x′∈x x ⊥ x′ | N(i)

As a consequence of these independences, the PMF can be rewritten as the product of a set of

potential functions whose domains are maximal cliques of variables.

(2.6) P (x) =
∏

C∈cl(N)

φC(xC)

In a sparse network, these cliques can be parameterized much more efficiently than an arbitrary

joint PMF. If the largest clique has size c, values of the function can be exhaustively enumerated

in a table of kc parameters, making the full representation of size |w| ≤ |C|kc.

2.3.1 Factor graphs.

Further reduction in parameters can be achieved by identifying specific factors that are not maximal

cliques in the MRF. A factor graph explicitly defines m factors by replacing N with an m×n binary

1In many models, there are several classes of discrete variables, with different number of states; I ignore this for

simplicity. Similarly, I will not belabor the fact that, since likelihood functions are invariant to multiplication by a

constant, enumerating values for every combination often creates a redundant parameter.
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matrix Mx describing a bipartite graph between each factor φ ∈ Φ and the variables in its domain.

As with N, I define an equivalent function Mx such that Mx(φ) returns the set of variables in φ’s

domain, allowing the updated factorization

(2.7) P (x) =
m∏
i=1

φi
(
xMx(φi)

)
Clearly we can produce a factor graph for any MRF by creating a factor for each clique; we

can also produce an MRF for any factor graph by defining N = Mx
tMx. However, the latter

transition is lossy, as a factor graph can represent additional structures – including, but not limited

to those captured by directed graphical models such as Bayes nets [42]. Figure 2.1 shows an example

where a factor graph’s representational capacity allows a reduced parameterization. If we consider

three random variables, each of which can take k = 4 distinct states, and whose MRF is fully

connected (a). Enumerating the probabilities of each of their joint states requires 43 − 1 = 63

parameters. A factor graph with equivalent independences (b) requires the same parameterization.

However the factor graph in (c) shows that the PMF is separable into pairwise potentials, which

can be represented with 3 ∗ (42 − 1) = 45 parameters. The potential savings of the factor graph

representation can increase dramatically with k and when Mx is significantly sparser than Mx
tMx

Figure 2.1: Blue circles are variables; red squares are factors. The Markov network (a) is shared

by both factor graphs (b) and (c), but the maximum clique factor (b) cannot be parameterized as

succinctly as three pairwise factors (c).

2.3.2 Parameter sharing.

So far we have considered only a naive parameterization for our PGMs, the exhaustive description

of local probabilities for each factor. To describe abbreviated parameterizations, we introduce the

real vector w, which contains d parameters. An associated m × d adjacency matrix Mw specifies

which parameters are necessary for the computation with which factors (as usual we define Mw
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as a function accessing the same information). Initially we will assume w is externally determined

and include it as a subscript on the probability function below. z(w) is a normalizer, also called

the partition function, which ensures that probabilities sum to 1 over all possible assignments to x.

(2.8) Pw (x) =
1

z(w)

m∏
i=1

φi
(
xMx(φi); wMw(φi)

)

Introducing w and Mw allows us to establish parameter sharing between factors by giving

them identical (or overlapping) adjacencies. Parameter sharing is the network generalization of

stationary transition probabilities in a simple Markov chain. In a chain, it can be used to encode

beliefs such as “alive rarely follows dead in any series of patient health states”. In a network an

analogous statement might be “adjacent pixels are twice as likely to be the same as different”. In

addition to making our representation more computationally tractable, these have an effect similar

to IID assumptions in allowing us to use more information in estimating a variable, reducing the

potential for overfitting.

Parameter sharing is also a crucial step in allowing the same model be instanced for application

to different datasets. A common approach in procedurally defining factor graphs is to give gen-

erators which reproduce the same factor potential many times, referencing the same parameters,

but with differing variable domains. This results in large blocks of identical rows in Mw, which we

sometimes refer to as instances of the same factor. When the same generator is applied to different

datasets, it is possible to create factor graphs of many different shapes that reference the same

parameter vector w. In supervised learning, this is used to fit parameters to a training dataset and

apply them to a new problem instance, which may have a very different shape.

2.3.3 Discriminative models.

In some applications, there is a clear division between the hidden variables x, whose values must

be inferred, and a second vector y of variables that will be observed during inference. In these

cases we can often achieve better results by ignoring the process that generates y and learning

only the conditional distribution P (x | y). To simplify discussions of scalability we sometimes

assume |x| = |y| = n. We incorporate y into our factor graph by introducing an m×n matrix My

(and associated function My) indicating which observed variables affect the computation of which

factors. The final PMF factorization is as follows.
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(2.9) Pw (x | y) =
1

z(w,y)

m∏
i=1

φi
(
xMx(φi) | yMy(φi); wMw(φi)

)
It is worth noting that while there can be factors with adjacencies in x but none in y, the

inverse is not true - or at least is wasteful, as inclusion of y-only factors will be irrelevant during

inference. In the models we will be discussing, y consists of the raw sensor data we have available to

us, and might include both discrete and continuous variables. In the following section on previous

approaches to spatial, temporal and relational PGMs I will discuss several forms of continuous

factors, in which categorical variables depend on real valued observed variables as well as real

valued parameters.

2.3.4 Representation.

As a final summary of our model, we define two tuples, the factor graph which contains structural

information about the distribution in the form of factor definitions and adjacency matrices, and the

inference state which contains factor parameters, observed and hidden variable values necessary to

compute the PMF in equation 2.9.

(2.10) FG : {Φ,Mx,My,Mw} IS : {w,y,x}

Figure 2.2 gives a schematic illustrating the memory layout of a complete representation of

both tuples. It is worth noting that for simplicity of notation and illustration, I’ve presumed that

the unobserved variables x can each take on k distinct values, and that the factors each compute

local likelihoods based on l observed variables, l unobserved variables, and l parameters. These are

meant to be taken as upper bounds. In practice x would be partitioned into variable domains with

their own category spaces of potentially varying cardinality. Phi would be partitioned into regions

of “instanced” factors representing the same relation among different sets of variables, with each

partition having a specific dimensionality for the unobserved, observed, and parameter portions of

its domain.

The spatial complexity of the upper bound representation is O (m(n+ d)). In practice, however,

it is more common to describe and implement factor graphs in terms of generators that exploit the

sparsity of Mx,y,w, both in terms of blocks within matrices and the limited row ranks induced

by finite dimensionality of factor domains. In addition to reducing memory consumption these

implementations allow faster access to adjacencies. In the next section I give several examples of

generators associated with spatial, temporal and relational regularities.
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Figure 2.2: Schematic of a factor graph with associated inference state.

Supervised learning. Although my contributions are centered on unsupervised learning, it is

useful to first review how the parameter vector w is determined when training data are available. By

far the most common objective in supervised learning is to find factor parameters which maximize

the expectation of a training set for which x is known.

(2.11) w∗(x) = argmax
w

Pw (x | y)

Factor parameterizations can often be chosen to be convex with respect to w, making it attractive

to optimize via gradient methods. The optimization is done in log-space, so the gradient with

respect to w can be written as follows.

(2.12) 5 logPw (x | y) = −5z(w,y)

z(w,y)
+
∑
φ∈Φ

5φ
(
xMx(φ) | yMy(φ); wMw(φ)

)
φ
(
xMx(φ) | yMy(φ); wMw(φ)

)

Factors are generally parameterized in a way that makes the gradients in the rightmost term

easily computable. For example, the most common representation for discrete factors is φ(v) =

expwv, requiring one parameter for each configuration v of the domain variables. The left hand

term is potentially more difficult, although it is possible to approximate the partition function by

conducting inference as discussed below at each step. A commonly used, easier to compute estimate

is the pseudolikelihood, which approximates the probability of the data as the product of marginal

probabilities for each variable given its Markov blanket.
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PL =
∏
x∈X

∏
φ∈M−1(x) φ(x|x\x,y; w)∑

v∈ZZk
∏
φ∈M−1(x) φ(v|x\x,y; w)

(2.13)

log PL =
∑
x∈X

 ∑
φ∈M−1(x)

φ(x|x\x,y; w)− log
∑

x′∈ZZk

∏
φ∈M−1(x)

φ(x′|x\x,y; w)

(2.14)

5 log PL =
∑
x∈X

 ∑
φ∈M−1(x)

5φ(x|x\x,y; w)−

∑
x′

(∑
φ
5φ(x′|x\x,y;w)
φ(x′|x\x,y;w)

)(∏
φ φ(x′|x\x,y; w)

)
∑

x′
∏
φ φ(x′|x\x,y; w)

(2.15)

In the rightmost term of equation 2.14, we can see that in place of the global partition function

we must calculate only a local partition function for each variable x. As long as both factors and

factor gradients are available, the local partition function and its gradient can be computed very

efficiently. In practice, efficient implementations can exploit sparsity and regularity in the factor

graph, as well as regularity in parameterization, to avoid many redundant calculations implied by

the summation and product iterations above.

2.3.5 Inference.

The most common inference operations in graphical models are marginalization, which computes

a posterior distribution for each hidden variable independent of all others, and maximum likeli-

hood estimation (MLE), which finds the single most probable configuration for all variable2. My

contributions are more closely related to MLE, which can be summarized by the equation

(2.16) x∗(w) = argmax
x

Pw (x)

Although MLE is NP-complete for general factor graphs with cycles, it can often be quickly ap-

proximated with maximum likelihood belief propagation. MLBP proceeds by iteratively updating

a series of messages between pairs of adjacent variables and factors (in both directions). From

variable to factor, the equation is:

(2.17) mx→φ(v) =
∏

φ′∈M−1
x (x)\φ

mφ′→x(v)

2It is worth noting that the MLE may not result in a good estimate of any individual variable, as the single

most probable joint configuration may have little in common with the majority of runners-up. Another popular

inference task marginalization, estimates the a posteriori distribution of each individual hidden variable given those

observed. Marginalization for general factor graphs belongs to the class P, but can be approximated quickly with

belief propagation methods similar to those described for MLE.
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In other words, the variable publishes an aggregation of what other factors are telling it about its

likelihood of taking on each value v. From factor to variable, the equation is

(2.18) mφ→x(v) = max
v∈ZZ|Mx(φ)|−1

k

φ(v ∪ v)
∏

x′∈Mx(φ)\x

mx′→φ(vx′)


In other words, the factor considers each possible assignment to its domain variables and broadcasts,

for each value, the likelihood of the most likely configuration which assigns that value.

Messages are initialized based on random assignments, and then iteratively updated based on

the equations above. It can be shown that each update (weakly) reduces a free energy equation

which has a minimum at the true maximum likelihood estimate. Although updates may occasionally

cycle, and can come to rest at local maxima, empirical results in a wide variety of models have

proved MLBP effective in practice.

2.3.6 The Bayesian view.

After discussing learning and inference as distinct problems, it is interesting to review equation 2.9

and note that the distinction between parameters w and variables x is somewhat arbitrary. Ignoring

the mingling between continuous and categorical variables3, imagine we were to merge w into x

and Mw into Mx. The result would be a valid factor graph taking the Bayesian perspective

that parameters are themselves random variables. Instead of conducting learning and inference

separately, we could apply a modified belief propagation which reconciled both at once.

Treating parameters in the same manner as other random variables has an appealing elegance

and simplicity, and Bayesian inference is a proved approach to unsupervised learning in many

domains. In this thesis, however, my approach is more closely related to EM-clustering than

Bayesian inference, in that I treat parameters and variable assignments as quantities to be optimized

in parallel, but with distinct processes. My reasons for maintaining this distinction are as follows.

• In the models I will introduce, w are the only real values which must be inferred. Describing

the procedures for optimizing them separately from those for optimizing x is a natural way

of taking advantage of the categorical or continuous nature as appropriate.

3Hybrid factor graphs with real-valued variables are common in some domains, and differ from discrete factor

graphs primarily during inference. Well selected conjugate priors can be used to give the messages in equations 2.17

and 2.18 finite parameterizations.
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• The sparsity structure of Mx,y,w is a crucial factor in the performance of message passing

algorithms, but this structure differs significantly between Mx and Mw. Mw tends to feature

large blocks of identical rows that are a function of parameter sharing. In Mx, regularities

tend to be “diagonal”, in that variables participate in the same factor because they are

adjacent in a spatial, temporal, or relational sense. The presence of these orthogonal forms

of structure would create long range ties in the associated factor graph, which are associated

with poor performance and non-convergence in belief propagation algorithms. I hope to show

that these problems can be avoided with a more EM-like approach.

• I address situations in which the number of classes for a latent categorical variable, and

therefore the number of associated parameters, are not known in advance. In the Bayesian

factor graph this would involve introducing new variables and edges whenever a new class is

considered; I view it as simpler to instead discuss manipulations of w.

Those differences notwithstanding, the EM and Bayesian approaches are closely related. EM is

often described as “semi-Bayesian”, and Beal [12] has shown that with very slight modifications,

EM clustering such as k-means can be shown to be a special case of Bayesian inference.

2.4 Kernel Conditional Density Estimation

The clustering methods and probabilistic graphical models discussed in the previous sections address

discrete unknowns in a dataset, such as missing values and hidden entities. The third framework

I build on, Kernel Conditional Density Estimation (KCDE), addresses the problem of inferring

from discrete observations a continuous function which describes their distribution. As I show in

chapter 6, the use of kernel methods allows us to consider structures in continuous space which

influence networks, and the use of density estimation allows us to consider relationships that are

poorly described by a single, modal outcome. What follows is intended as a brief introduction to

the topic and my notation, for greater detail I refer the reader to [113] (especially chapters 4-6,

for introductory topics) and [71] (especially chapters 3-6, for multivariate and conditional density

estimation).

2.4.1 Regression

An antecedent to KCDE, kernel regression, treats the problem of estimating a single-valued function

in continuous space when a limited number of (potentially erroneous or distorted) observations are



28 CHAPTER 2. BACKGROUND AND PRELIMINARIES

available. Beginning with the one-dimensional case, we may consider two vectors x,y ∈ IRn such

that each (xi, yi) is an observation of the function we wish to estimate. As with many regression

techniques, we seek to describe a function with minimum sum of squared errors in our sample

size, as such an estimator would minimize variance of error as our number of samples grew to

infinity. Rather than presuming a functional form and estimating its parameters, we can utilize

the Nadaraya-Watson kernel estimator defined as follows [90] [115]4.

(2.19) f̂(x) =
n∑
i=1

yi
k(h−1(x− xi))∑n
j=1 k(h−1(x− xj))

The two symbols above not previously introduced are a kernel function k and a bandwidth h.

Formally, a kernel must be symmetric (K(x) = K(−x)) and a probability distribution function

or PDF (K(x) ≥ 0,
∫∞
−∞K(x)dx = 1), some examples of which are given below. With the proper

normalization factor, a kernel can be constructed from any decay function as described in section 1.1.

Used in a weighted average as above, any kernel will produce the same estimate given enough data,

but the shape of the kernel can determine properties such as the handling of sparse or highly

clustered data, which I explore further in experiments in chapter 6.

h is the bandwidth, and acts as a scaling parameter on the x axis. Large values of h create

a smoother function: as all points become equally relevant, the function at all points converges

toward the sample mean. Smaller values allow for greater local variation. In general, a higher

bandwidth results in estimates with lower variance from the true value, but greater bias. h is

chosen by balancing these traits via the minimization of some risk function, most commonly mean

squared error. As a shorthand I generally refer to the scaled kernel K(x;h) = k(h−1x)
h , which is

itself a valid PDF.

The anatomy of our kernels implies certain assumptions about the regularity of the relationship

between x and y. The symmetry condition implies that all directions in x are equally “lossy”

with respect to mutual information about y, and the use of a constant bandwidth implies that the

scale of this loss is constant throughout the space. Both conditions become irrelevant given enough

samples, but these conditions must be close to true to get good results on a finite dataset. Situations

where certain regions of x are scaled differently from others can be addressed using locally adaptive

bandwidths [19]. If directional effects are known in advance, it is sometimes possible to perturb x

to remove them. For example, if f ≈ g(log x), where g is an unknown function believed to fit the

4Nadaraya Watson is one of several commonly used kernel estimators. I refer the reader to [56] for a comparison

and synthesis of alternatives.
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conditions above, a nonparametric estimator f̂(log x) may converge to better estimates with fewer

samples.

2.4.2 Density Estimation

Above I motivated kernel regression as the search for the true value of a deterministic function

observed through errored samples, yi ∼ f(xi) + εi, where εi is some noise variable. The function

and error model together can be viewed as a conditional distribution, P (y | x), for which the

estimator f̂(x) gives local means – a meaningful summary for many applications. However, for other

applications we may be interested in the entire density function - for example, to estimate sample

variance at different values of x, or to detect a multimodal distribution suggesting a nondeterministic

underlying relationship or a complex error process.

For now I set aside x and consider only a vector of points y (for continuity with the above,

we may imagine that they are samples at a single x value for which we wish to estimate the

distribution). Kernel density estimation estimates the PDF by placing a kernel-shaped probability

mass centered at each observed value. Since each such mass is itself a valid PDF, normalizing by

the number of samples ensures that the sum is also valid.

(2.20) P̂ (y) =

n∑
i=1

K(y − yi)
n

Since we have no direct observations of the PDF, bandwidth is typically optimized via cross-

validation: we consider a series of subsets s ∈ S[0, 1]n of our data, and choose the bandwidth which

minimizes the variance of the density estimate across these subsets, integrated over the variable

domain. The most common choice for S is all sets omitting a single data point, also referred to

as leave-one-out cross-validation. Stronger theoretical guarantees may be reached by considering

the entire power set, and computational performance may be improved by sampling a smaller set

for validation. Since the loss function given below is convex, it can generally be optimized with

gradient-based numerical methods.

(2.21) ĥ = argmin
h

∫
f̂(y;h)2dx− 2

| S |
∑
s∈S
{∀if̂(yi;h)} · s

Returning to a two variable setting, we might consider the relationship between x and y by

modeling the joint distribution of our samples, P (x, y). Density estimation for two or more vari-

ables can be accomplished using any symmetric multivariate density as a kernel. Generalizing
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the notion of bandwidth to the multivariate case is nontrivial and an area of active research, as

the parameterization can potentially include information about the orientation as well as degree of

smoothing. In this thesis I consider only product kernels describable for a distribution of n variables

in terms of a univariate kernel function as below.

(2.22) W (x; h) =
n∏
i

K(xi;hi)

Equation 2.20 may be trivially updated for the multivariate case by considering a vector differ-

ence within the kernel function and normalizing by the product of marginal bandwidths. Bandwidth

estimation may still be accomplished via least squared cross-validation, but computational difficulty

of the optimization increases exponentially in greater dimensions. This is compounded by the fact

that, due to the curse of dimensionality, the number of samples necessary to achieve comparable

levels of estimation accuracy also increases exponentially. Kernel based estimation of joint distri-

butions of more than 4 or 5 variables is not generally practical, methods for doing so by exploiting

sparsity in variable dependencies are an area of active research, i.e. [77].

2.4.3 Conditional and Categorical Density Estimation

Armed with estimators for P (y) and P (x, y), we may invoke Bayes law to estimate the conditional

density,

(2.23) P (y | x) =
P (x, y)

P (x)
≈ P̂ (x, y)

P̂ (x)

A complication with this approach is that bandwidths we selected to minimize estimation risk

for the joint and marginal distributions do not necessarily match on the overlapping variables, and

are not necessarily those which minimize risk in the conditional distribution. The complexity of

the consistent estimator for mean-squared-error risk in the conditional case puts it beyond the

scope of this introduction; it is furthermore computationally unattractive to optimize as a single

evaluation of the risk is O(n3) for sample size n. The alternative method I employ in this thesis is

the maximum likelihood estimate below, whose objective can be evaluated in O(n2).

(2.24) h∗ = argmax
h

n∑
i=1

ln
P̂ (xi, yi; h)

P̂ (xi; h)
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So far, I’ve discussed kernel estimation only for continuous variables. In chapter 6 I estimate

binary variables, conditioned on both continuous and categorical variables. Univariate kernel tech-

niques typically assume that all categories are equally “far apart” for smoothing processes. For

a categorical variable with m categories, the discrete kernel is a PMF over the possible pairings

between a fixed sample and a second one yet-to-be observed. The bandwidth parameter λ which

specifies the amount of probability mass that is divided between all non-matched inputs.

Cm(x = x′;λ) =

{
1− λ : x = x′

λ
m−1 : x 6= x′

As λ → 0, each category is treated as a separate distribution, and no smoothing occurs. As

λ→ 1, the variable is deemed irrelevant as all category assignments produce the same probability

density.

Combining discrete and continuous kernels is somewhat involved when MSE bandwidth fitting

or general multivariate kernels are involved. In this thesis I restrict myself to product kernels and

maximum likelihood estimation of bandwidth parameters, the combination of which allow discrete

kernels to be trivially substituted for continuous ones in the operations previously described.
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Chapter 3

Data

3.1 AIS Data (AIS)

The Automated Identification System (AIS) is a communication standard for ocean vessels used

by ships and ground stations to coordinate shipping traffic. AIS transponders on compliant vessels

are integrated with the ship’s radio, GPS, and navigational control systems. When pinged (via

broadcast messages from other boats or ground stations), the transponder replies with a radio

packet containing ship identity, current GPS coordinates, heading, speed, and various other fields

describing navigational state, destination, and more. AIS compliance is required on ships over

a certain size by most commercial ports, making it essential for most sizable merchant vessels

operating worldwide.

For 5 days in June 2005, a sensor network queried Automated Identification System (AIS)

transponders on merchant marine vessels navigating the English Channel. In total, the sensor

sweep captured movements of over 1700 vessels were recorded, with activities ranging from simple

shipping lane traversals to apparently complex itineraries with stops at multiple ports of call. The

reasons for the collection of the data are primarily security related. The global shipping system

plays a prominent role in a variety of terrorist attack scenarios, both in the United States and

abroad: in any country, the ports are both the most likely means of entry for bombs and other

weapons, and themselves a prime economic and symbolic target.

In addition to being an attractive target, ports are currently considered not secure – for ex-

ample, it has been suggested that only 3% of shipping containers entering the United States are

directly inspected by customs officials. The sheer volume of commerce conducted via international

shipping makes nave attempts at greater security infeasible, as neither the direct costs associated

33
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with detailed surveillance nor the indirect costs incurred by reducing industry efficiency are easily

absorbed. If automated techniques such as those designed above can give insight into the behav-

ioral patterns and structural features of the merchant marine population, then limited budgets for

surveillance and interdictions can be more precisely targeted to have the greatest impact on overall

security. The data under analysis here is especially promising as it represents the result of a relative

inexpensive, passive, and consensual surveillance effort.

In many sensor datasets, physical limitations of the sensors are a primary source of error; for

example, an error of 10m in a car-installed GPS system can introduce ambiguity as to which street

the car is on. In the case of AIS data, the physical error of sensors is so small compared to the

scale of navigation (some tankers are themselves 400m long) that modeling sensor error is less

relevant. Instead, a primary source of error comes from creative utilization of user-input fields

such as destination and navigational status. I chose to focus only on numeric fields that would

be drawn directly from navigational computers. Even within this set, there cases likely due to

misconfiguration which, for example, reported 0 latitude and 0 longitude for the study duration. I

preprocessed to eliminate all ships with constant or out-of-range values for any numeric field.

AIS responses in the original dataset were intermittent with inconsistent inter-arrival times. Al-

though work exists regarding the use of temporally irregular observations(e.g. [37]), I chose instead

to standardize approximate interarrival times by filtering data to produce streams of observations

in which at least 45 minutes and at most 180 minutes pass between observations. I also remove

ships that make fewer than 5 consecutive reports, yielding a dataset of 10935 sequences of 576 ships.

I also removed 140 erroneous responses sent by malfunctioning or otherwise corrupted responders.

Figure 3.1 shows the final dataset as visualized using Google Earth [2].

3.2 Company Relations Data (B2B)

Coase’s classical theory [27] defines a firm as a sort of bubble. Within, transactions are organized

according to a charter, but between, all coordination is done through market mechanisms. Real

firms engage in many activities that blur this (intentionally simplified) boundary. These include

nested firm structures, deliberately segmented markets, and the subject of this section of my thesis:

persistent inter-company alliances. These relations may be formed to ensure stable production,

support new technologies, or compete against other coalitions.

The evolving network of such interactions is a natural subject for network analysis, but is

challenging to operationalize due to the diversity and complexity of intercompany relations. One

common approach is to connect companies which share one or more members on their board of
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Figure 3.1: Observation points in AIS data

directors [86] [97]. Such “interlock networks” are attractive in being based on public information,

and are unambiguous in providing a network structure. However, they are by definition relevant to

understanding only those network phenomena which are governed by a small power-elite (much of

the literature in this area is devoted to demonstrating exactly which phenomena fit this category).

In this thesis, I take an alternate approach based on public disclosures of supply contracts.

Under most modern joint ownership arrangements, the managers of a publicly held company are

required to disclose information necessary for an investor to make informed decisions regarding

the sale or purchase of stock. In the United States, this release of information is regulated by the

Securities and Exchange Commission, which mandates a series of public forms that constitute a

standardized record of a company’s public activities. Among the activities that must be disclosed

are “material definitive agreements not made in the ordinary course of business”, a category which

has come to include a variety of inter-company relations.

The SEC publishes this information in machine readable formats via the EDGAR electronic

database [1]. However, since the forms consist primarily of unstructured text fields, substantial

pre-processing is necessary to extract data suitable for quantitative analysis. Many private firms

resell data processed in particular ways for investors interested in particular aspects of company
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activities. One in particular, Revere Data, LLC, has developed a specialty in extracting intercom-

pany relationships. Using a mix of machine processing and human analysts, Revere processes SEC

releases and other data sources on a daily basis, and consolidates relationship information in the

Revere Relationships database. Their ontology classifies relationships as belonging to the following

non-exclusive categories.

• A competitor participates in markets for a similar range of products. The markets and over-

laps are defined in another Revere product, Revere Hierarchy, and numeric values regarding

the amount of overlap are provided.

• A customer contracts another company for supplies necessary to provide their product or

service. The SEC criterion for disclosure of such relationships is that they be of material

interest to an investor; the typical interpretation is that the dollar amount of such transaction

must equal some percentage of the revenue of the reporting party. When available this

percentage is recorded with the relationship record.

• A partner is engaged in some type of shared enterprise with the source company. These rela-

tionships are binary and symmetric. Partnerships are divided into another layer of categories

such as “joint venture”, “distribution”, or “technology”.

In this thesis I focus particularly on customer relationships, for two primary reasons. First,

the presence of a normalized numerical weighting on relationships (the revenue share reported

by the selling company) makes it easier to establish a threshold which omits some reported but

insignificant links. Second, the relationship is transitive, in the sense that any long path through the

network represents a potential flow of goods and services in one direction, and money in the other.

Transitivity is important in the interpretation of network metrics such as Eigenvalue centrality, and

is not a property of the other relationship types.

Taken together, these customer relationships describe the public business-to-business (B2B)

economy of the United States. It is estimated that over 80% of dollars transacted in the US serve

B2B commerce. Figure 3.2 shows a snapshot of this network from July, 2007. The view is limited

to companies participating in relationships which were expected to constitute more than 10% of

the revenue for the supplier. There exists a giant component containing the a large proportion of

the companies, and for simplicity the view excludes many companies that were not a part of this

group. Often these smaller components represented specific such as the airlines, or the members

of a diversified conglomerate such as Berkeshire Hatheway. Many companies not part of the giant

component are excluded from the view. Nodes are colored according to a top level sector provided
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by the company (examples include “energy”, “technology” and “health care”). Table 3.1 provides

some vital statistics regarding the network.

Figure 3.2: Business-to-business supply network extracted from the Revere Relationships database,

July 7 2007.

Figure 3.2 illustrates a static network that is one snapshot of the Revere database. The true

network is dynamic, changing constantly as new companies and relationships are formed and old

ones dissolved. These changes are reported on a daily basis via SEC filings, but ambiguities in the

exact timing of a change and a permitted 4 business day lag between an event and filing make it

somewhat misleading to analyze network changes at this temporal resolution. I was given access to

archives of Revere’s databases, and conducted exploratory analysis to determine whether to evaluate

changes on a weekly, monthly, quarterly or yearly basis data. I elected to use quarterly snapshots

in this thesis because this was the first interval at which average hamming distances between

successive snapshots were significant, and because quarterly measurements mesh well with other

readily available financial data. Table 3.1 shows vital statistics regarding the resulting network’s

change over time. In each time frame I repeated the conditions under which the figure above was

generated:

• Only supply chain relationships constituting 10% or more of the supplier’s revenue are con-

sidered.
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Quarter Companies Links GC Size GC Links GC Diameter

2006 Q1 1229 1437 785 1078 23

2006 Q2 1240 1463 785 1088 21

2006 Q3 1236 1452 776 1064 20

2006 Q4 1239 1484 768 1072 18

2007 Q1 1261 1510 776 1084 20

2007 Q2 1201 1437 738 1045 20

2007 Q3 1328 1607 826 1183 21

2007 Q4 1311 1587 801 1145 20

2008 Q1 1248 1504 880 1249 26

2008 Q2 1198 1438 839 1191 27

2008 Q3 1192 1423 848 1184 21

Table 3.1: Quarterly network measures for B2B network.

• Isolates in the remaining network are omitted from analysis.

• When network measures are defined only on a single component, they are evaluated only on

the nodes in the giant component.

Table 3.1 reveals some interesting temporal properties of the B2B network. One point is that

the size and composition of the larger network remains relatively stable over the 3 years, rather than

growing alongside related factors such as US GDP or population. Another interesting factor is the

relative density of the giant component compared to the overall graph. This may suggest a latent

classification in companies, whereby they tend to either have many connections and participate in

the main economic network, or have no connections at all. This is born out by inspection of smaller

components, where we find conglomerate groups (such as Berkeshire Hatheway) and specialized

industries (such as the major airlines) operating in isolation from the rest of the economy. The

sudden jump in giant component size in 2007 is due to connections initiated from the energy sector,

previously the second largest component, into the rest of the network. This may be reflective of

a true economic shift, but is more likely an artifact of my data cleaning process and an indicator

of the inherent instability of some graph-theoretic concepts such as “largest component”. Either

because of this merger of components or for an independent reason, there is not a clear trend of

decreasing component diameter as had been observed in many other networks by [69].

Figure 3.3 provides summary information for several node-level attributes of the B2B network
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(a) Market Capitalization (b) Betweenness

(c) In-Degree (d) Out-Degree

Figure 3.3: Node attribute distributions for Revere dataset.

as measured in the fourth quarter of 2008. Each plot shows a nonparametric estimate of the

distribution of the variable in question, as well as the mean (in red), positive and negative standard

deviations (in orange), and a rug indicating the actual observed values. They are shown here to

contextualize data, and to illustrate a statistical distinction between the economic parameters and

network measurements related to the data.

Market capitalization of those companies reporting an estimate appears to follow an approxi-
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mately log-normal distribution (albeit with significant kurtosis), and is the only property visualized

for which the mean can be interpreted as a reasonable expectation regarding the underlying data.

Betweenness is defined as in [114] as the proportion of shortest paths within the network on

which a company lies. It is computed on an undirected (“or”-symmetrized) version of the net-

work, and only for those nodes lying in the giant component (the measurement presupposes a

connected graph). Since a large number of nodes are only on shortest paths between pairs involv-

ing themselves, I report only those nodes which are on additional paths. Betweenness is reported

as a proportion of theoretical maximum path participation given the size of the resulting graph. I

compared the goodness-of-fit of nonparametric estimates of the distribution based on betweenness

and log-betweenness. The fit based on log-betweenness performed substantially better in cross-

validation, suggesting that the data is more smoothly and symmetrically distributed in log-scale.

The nonparameteric analysis of the resulting distribution is clearly bimodal, suggesting distinct

“core” and “periphery” roles even among those nodes whose presence reduce the diameter of the

giant component.

In-degree and out-degree distributions are displayed in logscale, although the plotted nonpara-

metric density estimates were computed on absolute degrees. In each case, analysis was conducted

only on nodes having degree of at least 1. In-degree - the count of companies that are customers

of each supplier - appears to a first approximation to follow a power-law distribution as has been

reported in numerous analyses of total degree (e.g. [69]). Out-degree, by contrast, has a modal

value of 2, suggesting that those companies which are suppliers tend to have more than 1 cus-

tomer of significance. The distribution appears to be fatter-tailed, with several plateaus perhaps

corresponding to focal points in reporting (such as the tendency to report exactly 10 or 20 major

customers).

Figure 3.4 shows the geographic distribution of company headquarters. The plot inadequately

represents the extreme relative density of public corporations based in metropolitan areas, and

especially the East coast. However, a few key features are clearly visible that are relevant to the

geospatial analysis conducted in chapter 6. The distribution of company headquarters includes

clusters (major cities), corridors (such as the Florida coasts or the strip between Washington,

DC and New York), and density disparities such as the East and West of the Mississipi. This

combination of factors makes it an attractive target for nonparametric and mixture based analysis

rather than a single explicit model.
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Figure 3.4: Listed addresses for public companies in Revere dataset.

3.3 Supplementary datasets

3.3.1 Sampson’s Monastery (SAMPSON)

I chose Sampsons monastery dataset [104] as a testbed for the FOG framework because it is one of

the datasets most widely discussed in social grouping literature. Sampson conducted a survey in

which novice monks at a monastery ranked their compatriots according to four criteria: like/dislike,

esteem, personal influence, and consistency with the creed of the monastic order. Sampson made

strong arguments for several discrete social groups in the data based on direct anthropological

observation. Events confirmed his observations when, during the study, novices of one group

resigned or were expelled over religious differences. Samsons surveys may be the dataset that

comes closest to providing social data with a labeled ground truth for grouping research.

Sampsons monastery is discussed in greater depth in Sampsons original (1969) dissertation, and

in the December 1988 issue of the journal Social Networks. I compare the groups discovered by

FOG to Sampsons and those presented by Reitz in that issue in his introduction of a hierarchical

clustering algorithm. Like that paper, I use Breiger et al.s [17] collation of Sampsons data: for

each of the relations like, esteem, influence, and consistency, the top three positive selections by
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Figure 3.5: Breiger (1975) collation of the Sampson monastery data

each individual at time three are recorded in a relation matrix. Negative selections are ignored, as

negative relations are intransitive and thus cannot be positive evidence of an inherently transitive

co-membership. These matrices are summed, yielding a single matrix summarizing the preferential

data at that time period. The matrix in its entirety is shown below as Table 3.5. Because FOG

analyzes link-based data, I then pre-process this matrix to generate links using the random tree

technique described above.

3.3.2 Davis’ Southern Women (DAVIS)

The southern women dataset due to Davis et al. [29] lists the attendance of 18 women and

14 parties. The parties in this network are precisely the type of linking observation which FOG

is designed to analyze without pre-processing. As with the monastery dataset, there exists a

labeling for groups based on direct observation rather than algorithmic analyses. Davis et al. used

ethnographic analysis, including surveys, to distinguish not only between the two major cliques,

but three tiers of centrality within them.

A wide variety of mathematical approaches have been used to reanalyze the data. Freeman [41]

performed a comprehensive meta-analysis of 21 such studies, and I analyze our results in response

to some of his conclusions. I have also accepted that paper’s verdict on which of two conflicting

figures in the original work was correct. I reproduce that figure as Table 3.6 for reference
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Figure 3.6: Davis’ (1941) southern women party attendance
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Chapter 4

Community Detection

4.1 Problem Definition and Background

Community detection is the sociological instantiation of the clustering problem. In a social context,

groups often possess an entitivity beyond the descriptive and predictive criteria which clustering

algorithms typically optimize. Individuals often name groups, describe their relationships to groups,

and describe relationships groups have with each other. Since the earliest days of social network

research, accurate detection of these group entities has been an attractive and elusive goal. Once

identified, group structure can be used for high-level descriptions of complex networks, to support or

contest theories about underlying processes influencing social interactions, and to detect strengths

or vulnerabilities of social structures and individual positions in a variety of contexts. These goals

have important applications in a wide range of fields, including anthropology, sociology, organization

science, economics, management, and security and intelligence programs.

In social network settings, community detection has typically consisted of dividing nodes into

discrete partitions indicating mutual association. However, common sense and empirical analy-

sis [41] support the view that humans are capable of simultaneously filling many roles in many

contexts, and that a strict partitioning may prevent detection of supported group entities in a

graph. To better understand modular structure in networks, we must employ models which allow

for multiple memberships and varied levels of membership.

In this chapter, I build off link analytic group detection methods due to Kubica et al. [65] and

Battacharya and Getoor [10], which allow for relaxed partitioning by permitting individuals under

certain conditions to participate in multiple groups. I refine the representation of group structure

by permitting varying strengths of association from members to group entities, and present an

45
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algorithm that generates such groupings from link data using a stochastic model of link emission

from group entities and a maximum-likelihood clustering method.

To analyze the utility of the fuzzy overlapping group model, I make comparison to groupings

by anthropological observations and prior algorithms. The results suggest that this approach is

capable of identifying groups that are confirmed by existing quantitative methods as well as expert

ethnographic analysis, while providing additional information about overlap between groups and

individuals who play multiple roles. This additional information facilitates understanding emergent

behavior in the groups.

As a more technical assessment of the fitting algorithms, I perform parameter recovery exper-

iments on random data whose generative distribution matches the model. The fitting algorithms

are evaluated and compared on the basis of computation time, accuracy in detecting the quantity

of latent groups, and accuracy in detecting group composition.

4.1.1 Defining ’Group’

A group is a set of entities which experience the same membership relation with respect to the

same external entity, real or abstract. In the social sphere, this can take many forms. For example,

a formal organization like a board of directors, an implicit organization like a circle of friends,

a demographic quality such as hair color, or even the set of individuals uniquely affected by an

external force, such as the victims of a flu epidemic.

Cohesive groups, which exhibit more frequent association within groups than between them,

are sometimes contrasted with structurally equivalent groups [114], which are defined by matching

relationships with other groups rather than with each other. Entities are grouped together as

structurally similar if their interaction patterns are similar; that is, if they interact with the same

other entities or classes of entities. The group they experience membership with in this case is called

a structural role. An intuitive example of a structural role is the middle manager in a hierarchical

organization, who interacts with both upper management and employees, but not necessarily other

middle managers. Like cohesive groups, structural roles can be implicit and unnamed or encoded

in formal relationships. Like cohesion, the concepts of structural similarity and roles have been

operationalized in many ways, the most common discovery techniques including block modeling [39]

and CONCOR [17].

The fuzzy, overlapping grouping (FOG) algorithms I develop in this chapter are designed to illu-

minate only cohesive groups, but some correlations exist between structurally similar and cohesive

groups. Membership in a strongly cohesive group can constitute a structural role, as interaction
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with other members dominates individuals interaction patterns. Roles whose members do not in-

teract can in some cases nonetheless be detected as a cohesive group following a transformation in

data. As I discuss in my analysis of Sampsons data, detecting overlapping cohesive groups permits

detection of a type of structural role, the interstitial actor. Finally, many structural groups appear

cohesive when we consider interactions mediated by common experience or co-occurrence in data.

For example, members of boards of directors might occur together on the recipient list for formal

memos and meeting announcements. Individuals afflicted by the same communicative disease might

tend to be clustered in space and time in hospital records.

Measuring this definition of cohesion depends on being able to clearly measure both the presence

and absence of links between entities a property inherent in social network data, but less obvious

in link data, which I define and discuss in the next section. In link data, a stochastic model must

fill the roll of defining what comprises a concentration of links. In the next section I describe several

widely used algorithms to detect cohesive groups in both types of data.

4.1.2 Variations and Detection of Cohesive Groups

Cohesion generally refers to a greater frequency of connections within groups than between them,

but this umbrella supports many definitions. Most definitions would support that a set of disjoint

cliques are clearly each cohesive groups, but more ambiguous data lead to questions such as: Are all

individuals parts of groups? Can individuals be part of more than one group? If nested subgraphs

contain increasing interaction density (such as in a core-periphery structure), are there several

cohesive groups or one?

One major theme in formalizing cohesion has been an evolving series of graph theoretic group

definitions, generally subgraphs satisfying internal connectivity requirement (e.g. cliques, k-clans,

k-cores, k-plexes). These structures may overlap, leading to the possibility multiple community

memberships. Palla et al. [100] give an iterative definition, related to k-cliques, designed specifically

to examine overlapping communities. Because group membership under their technique is binary,

all individuals in a community overlap have equivalent positions. One goal of the FOG algorithms

is to reveal distinctions in these interstitial roles by detecting weights of membership.

An alternative graph theoretic approach due to Moody and White [87] emphasizes paths, defin-

ing cohesive communities as those supporting redundant communication threads. Interestingly,

although the modularity heuristic of Girvan and Newman [78] is capable of evaluating any parti-

tioning, the algorithm they give for approximately maximizing it takes a path-based perspective

by iteratively removing of high-betweenness edges. Both techniques assign binary memberships,



48 CHAPTER 4. COMMUNITY DETECTION

and those using Newmans method lack capacity for overlapping or nested groups. Moody and

Whites communities do not overlap at any given level (FOGs do), but their hierarchy provides

nesting relationships and is in some ways more informative as it supports the pairwise query: at

what level are two individuals grouped? Newmans algorithm has seen several extensions and ap-

plications [26] [94] [93] demonstrating its effectiveness on extremely large datasets which cannot be

analyzed by other techniques (including FOG).

Another line of grouping research, block modeling, revolves around partitioning matrices such

that subgroups have consistent relations. Block models are a natural setting for detection of struc-

tural equivalence [39], but have been extended to a variety of other settings including detection of

cohesive groups [34]. Popular algorithms for block modeling include CONCOR [17] and FACTIONS

search [16]. The stochastic model of Snijders and Nowicki [96], which presumes that likelihood of

interaction is uniform within blocks corresponding to a discrete latent partitioning, is capable of

finding both cohesive groups and intergroup relations.

Graph partitioning has received significant attention outside of sociological literature. The

METIS [58] and spectral partitioning algorithms [51] are desigined to find well connected subgraphs

suitable for parallelization of graph algorithms, in which near-uniformity of partition size is a

desirable quality. This is balanced with the presumption that the loss of link information resulting

from edges destroyed by cuts between partitions will also degrade results. These methods differ

significantly from FOG in their emphasis on partitions of equal size and on strict partitionings of

the network.

4.1.3 Bipartite (Link) Data

Recently, Doreian et al.. [36] have generalized block modeling for the analysis of 2-mode data, such

as the relation of individuals and parties attended in Davis study described below. Such relations

are represented as rectangular matrices, and are block modeled by providing a separate partitioning

for rows and columns. This closely relates to H-FOGs method, which discretely partitions one mode

(the events). Rather than partitioning the other mode (individuals), however, FOG optimizes and

presents fuzzy groups induced by the first partitioning.

In this chapter, I often discuss 2-mode as described above, but refer to it as link data. This is to

distinguish it from network data, and to emphasize FOGs perspective that we observe a sample of

an infinite stream of links rather than the entirety of a finite matrix. I refer to our observed links as

evidence, represented as an unordered set of links. Each link is an unordered set of entities in which

each entity is assumed to have the same relation to an observation, such as “signed meeting roster”,
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or “was observed in photograph”. Our set of links may carry redundant associations (i.e.two events

with the same attendees) or simultaneous associations of more than two entities (one event with

five attendees).

Data mining communities have produced several methods for extracting group entities from this

type of data, including the GDA model/k-Groups algorithm [65] and Battacharya and Getoors [10]

iterative deduplication method. These algorithms partition link data to infer groups which max-

imize the likelihood of observing the given data, according to a stochastic model. The fact that

groups are built by partitioning links (not individuals) produces the advantage that, as with Palla

et al., individuals may belong to more than one group. The method I introduce in this chapter

extends these methods by allowing varying levels of association from entities to groups. This re-

laxation is intended to allow group models to more tightly fit the data and to represent a wider

variety of associative structures.

Another form of decomposition of bimodal data lies in factor analysis such as principle compo-

nent analysis (PCA) and independent component analysis (ICA) [54]. Both methods are designed

for dimensionality reduction in continuous vector spaces. PCA does so by identifying a given

number of orathgonal vectors which capture the greatest degree of variance in the original high

diensional set. ICA does so by identifying factors whose loadings are most independent (minimally

correlated). The focus of both methods on continuous data and the usage of multiple factor load-

ings to explain each data point differentiate these algorithms from FOG, which operates on binary

attendance data and presumes that a single group is responsible for each observation.

The existing technique with greatest similarity to the FOG framework is Latent Dirichlet Allo-

cation (LDA) [14], a stochastic model for machine learning mixed memberships. Airoldi et al. [6]

have adapted the model to examine single-mode network data, yielding novel clusterings in protein-

protein interaction networks. The primary distinction between FOG and relational LDA models is

that LDA allows a single observed link to be explained by a mixture of groups, whereas FOG as-

sumes that a single social context is associated with a given observation, but hierarchically clusters

such contexts to construct a restricted mixed-group structure.

4.2 Fuzzy, Overlapping Grouping

Grouping methodologies are often introduced as algorithms, although they encompass distinct

models, measures, data translations, and validation schemes as well as the model-fitting algorithm

itself. To minimize this confusion, I discuss FOG as a framework consisting of several components.

The FOG generative model relates link interactions we observe to group entities, which are hidden.
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The H-FOG algorithm is a simple approach to fitting groups of the type described in the model

to data based on hierarchical clustering of links, with the advantage that various levels of group

granularity can be explored following a single execution of the algorithm. k-FOG is an expectation-

maximizing link clustering approach to the same task when a fixed number of groups is known a

priori, and α-FOG is a third algorithm that estimates the number of groups from data while also

determining group composition. A separate link generation algorithm creates link data from social

network data.

4.2.1 Link data from network data

Link analysis and network analysis have grown out of distinct communities, despite being frequently

applied to the examination of the same interaction phenomena. In many ways, grouping research

has become an intersection point in which practitioners of both fields are attempting to capitalize

on the strengths of the other. Link analysis researchers approach group models as an opportunity

to characterize structure and dependence in interaction data which is too often analyzed as though

observations were independent.

Analysts who have traditionally used graph theoretic approaches to examine network data are

incorporating statistical models and significance tests to improve their ability to reason about

noisy data and support claims about the significance of structural characteristics in their networks.

For frameworks such as FOG to see the widest use (and scrutiny), we must develop translation

techniques that allow data in one format to be examined using algorithms for the other. These

translations must account for disparate data qualities emphasized in the two branches of analysis.

Since small changes in network structure can have a large impact on the graph theoretic mea-

sures used in network analysis, translations from link data to network data are designed to reduce

noise as much as possible. Many network datasets begin life as something more closely resembling

link data. Lists of interactions or survey responses are “flattened” into a matrix of pairwise in-

teractions using summation, cutoffs, or reciprocation criteria depending on the interaction being

studied and the network type desired. Kubica et al. [64] have presented cGraph, an expectation

maximization approach to detecting underlying networks based on such data.

The stochastic link analytic techniques I examined are intended to robustly handle noise given

enough data. However, when our source data is limited to the information in an interaction matrix,

we run the risk of amplifying any noise present when we generate additional links. We must also

tackle the problem of reflecting the structural data contained in the network model in a way that

link analytic algorithms can interpret.
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The simplest approach would be to interpret each edge in the network data as a single link

between two entities. Though it retains all of the original data, this naive method produces links

that individually contain the minimal amount of structural information. Broader patterns such

as paths and clusters can be revealed only by inspecting many links at once. This disadvantages

greedy algorithms that examine individual links, such as H-FOG, because they have little basis on

which to make their earliest (and most important) clustering decisions. For these algorithms, we

must generate “richer” links that give more structural information while still only sampling the

overall network.

I have adopted the “random tree” solution described by Kubica et al. [64], inverting its purpose

to generate random interactions rather than extract graphs from observed interactions. Link data

is constructed stochastically by iteratively adding to links entities which are randomly chosen from

the neighbors of those already present. Fig. 4.1 illustrates this process, which is defined explicitly

in algorithm 3. In the illustration, nodes A and B have been visited already, making the entire

peripheral boundary of C, D, and E available as possible next additions. Note that C has a twice

greater probability of selection than D or E, as there are two links proceeding to it from our

already-visited structure. If our matrix were weighted, it would be the summed weights of those

links rather than the quantity that determined relative likelihood. The intuition behind this process

is to simulate chains of gossip or casual assemblies that would be directly measured as a source of

2-mode data if available. I use this algorithm on a weighted collation of Sampsons monastery data

later in this chapter.1

Since algorithm 3 can operate on binary or weighted networks, with directed or symmetric

edges, it is important to note how weights and directionality are interpreted. In the “viral process”

metaphor for link generation, weights indicate relative probability of interaction. So this is most

appropriate for weighted networks where weight indicates some kind of frequency statistic, rather

than ranked qualitative assessments such as esteem. Directed links make the order in which nodes

are added to the random tree significant, but this information is discarded as the links are considered

to be unordered sets. However, if random trees are initiated from all nodes, directionality will

manifest as an asymmetric conditional probability of appearing together. If node A has one edge,

directed at B, than observation of A will always imply observation of B - but the reverse will not be

true. It’s worth noting that the random tree algorithm could potentially be adapted to weighted

1A potential criticism of this method is that its stochasticity introduces uncertainty into results. In fact, since

results will converge with a large sample, the user can define a preference between accuracy and speed by specifying a

sample size. Reproducibility can be achieved by storing and reusing a random seed. Finally, random link production

is consistent with FOGs modeling of uncertainty in all data, and is affirmed by both our own empirical results and

the prior efforts below.
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Algorithm 3 Random Tree Sampling

Require: A ∈ IRn×n {unimodal adjacency matrix, weighted or unweighted}
Require: m ∈ ZZ {the number of links to seed from each node}
Require: c ∈ ZZ {the number of entities included in each link}
Ensure: L {mn × n binary link matrix with up to l nonzero memberships per row connected in

bfA}
L← 0kn×n

for i = 1 to n do

for j = 1 to m do

r ← m(i− 1) + j

lr,i ← 1

for k = 1 to c− 1 do

p← ljA {px is the summed adjacency from current link members to x}
∀xpx ← pxI(lx 6= 1) {do not repeat members}
z ←

∑
x px

if z = 0 then

j ← m {break if there are not enough adjacent members}
else

y ∼ p
z {draw next link member from PMF given by normalized adjacency vector}

lr,y ← 1

end if

end for

end for

end for

or unweighted muilti-graphs, if a weighting scheme is adopted to determine relative significance

of each edge type in the link generation process. This is effectively done by my use of Breiger’s

collated Sampson monastery data later in the chapter.

Prior work has examined relationships between networks and distributions of random processes

on them. Kashima and Tsuboi [59] showed that random walks can be used as a kernel in classifi-

cation of structural features of a graph. Random walks and trees in social networks have been used

in simulations as analogs to real world processes, such as knowledge dissemination or the spread

of a disease [24]. Page and Brin [18] note that eigenvalue centrality of each node in a network is

proportionate to the fraction of an infinite length random walk it will occupy, which they have
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Figure 4.1: Three iterations of random tree generation. Solid nodes and the edges between them

are included in the tree. Solid peripheral nodes are equiprobable candidates for inclusion in next

iteration.

famously analogized to the search for information on the web.

In this chapter, I interpret groups found in random trees as sets of individuals who are likely to

be exposed to the same experiences. Since we cannot directly calculate or represent the distribution

of such groups, I sample them instead by computing a fixed number of groups of fixed size.

4.2.2 Stochastic model of evidence generation

Since we are trying to infer groups based on link evidence, I define our group membership relation as

the tendency to be produced in observations associated with the group. We can alter the strength of

the tendency to be included in observations without altering its fundamental character. I formulate

the above mathematically as follows.

Consider a set of n entities organized into k groups. Entities are elementary objects whose

presence or absence can be determined consistently within each of a set of m observations (called

links), emitted by the groups. The links are described by a binary matrix L ∈ [0, 1]m×n, and the

groups that generated each one are enumerated in an emission vector e ∈ [1 . . . k]m. It is sometimes

convenient to refer instead to the emission matrix E ∈ [0, 1]m×k such that ei,j = I(ei = j).

Groups emit with different frequencies, according to a frequency distribution θ across groups

such that θi, for i ∈ 1 . . . k, is the probability a that a randomly selected link was emitted by the ith

group (
∑k

i=1 θi = 1). Elsewhere in this paper I refer to θ as the emission prior, since it represents

our expectation that a piece of evidence will come from a specific group, prior to examining the

members observed in the link. Each row of a membership matrix Γ ∈ IRk×n is referred to as a

membership vector γi, and its entities give a PMF over the n entities (
∑n

j=1 γi,j = 1) such that γij is
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the probability that entity j will be observed in a link emitted by group i. The above relationships

are enumerated in the equations below.

(4.1) P (ei = x) = θx, P (li,j | ei = k) = γl,j

When considering the likelihood that a particular group would produce a specific link, we must

consider not only the probability of observing the entities present in the link but also the probability

of excluding those not present.

(4.2) P (li | ei = j) =
n∏
x=1

li,xγj,x + (1− li,x)(1− γj,x)

The assumption that, in the emissions of a single group, members are emitted completely

independently (li,j ⊥ li,k) is important to maintaining that the membership relation differs only in

intensity between entities, as a joint distribution would imply additional substructure. Similarly, I

assume that links are generated independently given the groups and their emission priors (li ⊥ lj |
Γ, θ), so that the only structure exists between the groups and the entities themselves, and in the

relative frequency of emission of the groups. Combining these, we can derive a likelihood that an

entire set of evidence would be produced given a grouping and an emission distribution vector.

(4.3) P (L | Γ, θ) ∝
m∏
i=1

k∑
g=1

θg

n∏
x=1

li,xγj,x + (1− li,x)(1− γj,x)

Performance and representation precision (probabilities involved can be extremely small) de-

mand that the above likelihood function be calculated within a log-likelihood transformation. To

enable this transformation, I add the restriction that ∀i,j0 < gi,j < 1 (in practice by including a

weak Beta prior during optimization). This ensures that a group always has some nonzero proba-

bility of emitting its least related entity, or excluding from a link even its most significant member.

Previous stochastic models of link generation have included an error term under which there is

some small probability that a link will be emanated containing entities which do not cohabit any

group. This was necessary to allow models to be fit to data without placing extreme penalties on

groups which were forced to include outlying entities as equal members to more supported nodes.

In FOG, a similar purpose is served by allowing weak memberships and assuming weak universal

memberships.
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(4.4) logP (L | Γ, θ) = log z +

m∑
i=1

log

k∑
i=1

θg

n∏
x=1

li,xγj,x + (1− li,x)(1− γj,x)

where z is a normalization constant not dependent on Γ or θ. With the relationship be-

tween groups and evidence described above, we can approach community detection via expectation

maximization. However, the inner product in equation 4.4 makes the equation non-convex and in-

tractable for gradient methods. In the following sections I give algorithms to instead approximate

optimal parameter settings using local search and iterative expectation maximization.

4.2.3 The H-FOG algorithm

Since the FOG model holds a single group responsible for emanating each link, we can restrict our

search by considering only groups which optimally represent some partitioning of the data. Given

an emission vector e, we call the set of links assigned to each group that group’s support, and refer

to that subset of the link data as Le=i (for group i). The optimal membership value for each entity

is equal to the proportion of the supporting links in which that entity occurs. However, to avoid

overfitting and to prevent infinitely negative probabilities, we initialize each membership with a

weak beta prior, resulting in the estimate below.

(4.5) γ̂j(i;α, β) =
α+

∑m
x=1 I(ex = i) ∗ lx,j

α+ β +
∑m

x=1 I(ex = i)

The parameters α and β are the same for all memberships, and must be specified in the FOG

algorithm. As the prior is not intended to be informative, it is sensible to set α = β = ε, where ε

is as small as can be used while retaining numerical stability in whichever algorithms are applied.

To simplify notation, I omit them from most equations when utilizing γ̂. An entire membership

vector constructed this way is marked with a γ̂(i), and an entire membership matrix Γ̂(e).

H-FOG builds groups of this sort by iteratively clustering link evidence in a way that ensures

links with the greatest similarity are grouped together. For each pair of optimized group member-

ship vectors {γ̂(i), γ̂(j)}, I consider a new group γ̂(i, j) that would maximize probability of emitting

the combined evidence supporting both groups. I then calculate the ratio indicating the relative

increase in likelihood of the underlying links if they are considered the emissions of one merged

group rather than two separate ones. Given a current link clustering e, the H-FOG scoring function

is as follows.
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(4.6) sH(i, j) =
(
∑m

x=1 I(ex = i))(
∑m

x=1 I(ex = j))P (Le∈i,j | γ̂(i, j))

(
∑k

x=1 I(ex = i))P (Le=i | γ̂(i)) + (
∑k

x=1 I(ex = j))P (Le=j | γ̂(j))

At initialization of the H-FOG algorithm, each observed link is assigned to its own group. On

each iteration, the score function is computed for all pairs of groups, and the two groups with the

highest merge compatibility are combined. Since the score function is independent of parameters for

groups other than the two in question, if O(m2) memory is available then a dramatic performance

increase can be reached by memoizing scores and recomputing only those for the new, merged

group on each iteration. I give the algorithm below as determining a set number of groups, but in

practice we can store intermediate states to allow easy access to the hierarchy later.

Claim 1 The computational complexity of H-FOG is O(m2n logm).

Proof. If we choose a representation g(i) for each γ̂(i) such that gj(i) =
∑m

x=1 I(ex = i)lx,i and

ĝ0(i) =
∑m

x=1 I(ex = i), such that γ̂j(i; ε) =
ε+gj(i)

2∗ε+g0(i) . g(i, j) is trivially computable in O(n) as

g(i) + g(j), and the probability of a group emitting its own support can be computed in O(n) time

using the following equation, allowing sH to be computed for any previously computed groups in

O(n) time as,

(4.7) P (Le∈i | ĝ(i)) =
n∏
j=1

γ̂j(i)
gj(i)γ̂j(i)

g0(i)−gj(i)

If an ordered data structure with logarithmic insertion and deletion time, such as a heap, is

used to maintain an ordered list of sH scores, initialization step of H-FOG takes O(m2n logm) time

and each of the O(m) subsequent merge steps can be performed in O(m + logm + n), for a total

bound of O(m2n logm) �

It is worth noting that the algorithm is embarassingly parallel, as merge score calculations could

be trivially divided among a number of threads and reassembled between iterations.

The tree in Fig. 4.2, constructed from the southern women dataset, illustrates the hierarchical

clustering of evidence. Each intermediate node corresponds to a group tuned to produce evidence

of the types found in the leaves below. I define a horizon from this tree as a set of nodes such

whose children span all of the evidence, for which none is the ancestor of another. A horizon,

such as the circled nodes in Fig. 4.2, corresponds to an emission vector from groups which account
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Figure 4.2: Clustering tree from the DGG dataset

collectively for all of the observed evidence. If we choose our horizon from the bottom level, groups

are tuned to very specific profiles of evidence, so that they are expected to produce any of the few

links below them with relatively high probability. As we move up the tree, membership rosters

for groups become more complex and the distribution of links which they produce becomes more

entropic, so that the probability of producing any particular link drops exponentially. At the same

time, the average emission probability θ̄ rises as we ascend the tree, since each group represents a

greater proportion of the underlying evidence. Near the top, groups are overly general and fit the

evidence underneath poorly, so that, even though θs are high, the total probability of producing

the evidence set is quite low.

Unfortunately, reduced link likelihood P (L | Ĝ(e)) generally outpaces increased emission prob-

abilities over a climb of the tree, so that there is usually no optimal midpoint that would allow us to

discern a most probable number of group entities. This conflict between the need for well-supported

groups and ones that tightly fit the data must be resolved by a preference fitting the context of the

analysis. As such, an operator must currently specify a number of groups, k, for which to search,

effectively deciding on a tolerable tradeoff between a simple model with few groups and a model

which most closely fits the evidence but may in fact be over-fit. Fortunately, due to its hierarchical

nature, H-FOG needs be run only once to generate candidate groupings for each feasible k. An

analyst can then explore different numbers of groups dynamically to determine subjectively which
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is best supported.

4.2.4 The k-FOG algorithm

H-FOG’s clearly bounded running time and the fact that it creates a navigable hierarchy of groups

make it attractive for data exploration in small datasets. However, the greediness of the algorithm

can cause arbitrarily bad results in pathological cases, and the O(m2n logm) running time make it

unattractive for large datasets.

The k-FOG algorithm, given below, is intended to detect a provided number of high-quality

(though not guaranteed optimal) groups in much larger datasets in a reasonable amount of time.

It is a FOG-specific application of the EM clustering algorithm discussed in section 2.2.

Claim 2 k-FOG will halt within O(km) iterations.

Proof. Each iteration which reassigns ei for any i must strictly increase the overall likelihood of

the data with respect to the current parameters. This means it cannot revisit any previous state

of e, allowing it to at most repeat for its maximum number of iterations. �

In practice, k-FOG tends to halt very quickly in a fixed point for the two parameter updates.

Although the global maximum grouping is just such a fixed point, the one reached in practice

depends unfortunately on the starting configuration.

4.2.5 The α-FOG algorithm

Both H-FOG and k-FOG require the user to select the number of groups, either by exploration or as

a starting parameter. α-FOG infers the number of groups from data, but still depends on the user

for an α parameter which determines the tradeoff between precision in each group representing the

distribution of links in its support and summarization in that each group is supported by numerous

links.

When describing k-FOG, the need to update group parameters with each link reassignment

brought us into the Bayesian territory of treating Γ as a random variable. α-FOG extends this

to the θ parameter by assigning it a Dirichlet process (DP) prior. For our purposes the DP is

best described as an infinite dimensional version of the symmetric Dirichlet distribution, which is

itself a distribution over discrete PDFs. The parameter α of the symmetric Dirichlet specifies the

expected concentration in the PDF. When α = 1, all distributions are equally likely, α > 1 prefers
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more even distributions, and α < 1 produces distributions whose probability mass is concentrated

in a few values. In the Dirichlet process case, α gains a convenient interpretation that alpha
m+α gives

the probability that the (m+ 1)st link “innovates”, e.g. belongs to a never-before seen group.

(4.8) P (em+1 = x | e1...m) =
α+

∑m
i=1 I(ei = x)

m+ α

Although the equation above is written with respect to a particular ordering of our links, we

are indifferent regarding the order and could calculate the same marginal probability for any single

assignment conditioned on the others. Using it, we can reformulate the likelihood of a single link

as follows.

(4.9) P (li = x | . . .) = P (ei = x | e−i)P (γx | e)P (li | γx)

This likelihood becomes the objective in an expected conditional maximization (ECM) algo-

rithm, where it increases as we optimize e and Γ in each successive iteration. There is no need to

update θ because it is marginalized out in the equation above; in implementation a representation

is updated in the sense that counts for each group are maintained to make certain calculations

below faster.

4.3 Example analysis: fuzzy groups in the monastery

Because Sampsons data consists of pairwise relations, I generated link data using the random-tree

technique previously discussed. Ten trees were initiated at each node, each expanding to contain

three nodes, and the set was clustered using the H-FOG algorithm. Results are shown as a two

mode (agent → group) network in Fig. 4. Line thickness indicates the degree of membership,

normalized by group as it is not necessarily appropriate to compare association levels between

groups. This is because our link generation method required exactly three individuals in each

observation, artificially deflating the average frequencies of emission in large groups and inflating

it in small ones. Nodes have been manually laid out to elucidate membership categories I discuss.

Sampson identified novice 2, Gregory, as the most significant leader of the young Turks, the

liberal newcomers who would be expelled or resign in the coming drama. The members of that

group are collected exactly as those affiliated with group A. Gregory’s position, as both the most

affiliated to the Turks and the only novice with connections to all three groups, suggests a high
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Figure 4.3: Fuzzy groups in Sampson’s monastery. Group A corresponds to the “young Turks”,

group B to the “loyal opposition”, and group C to the “outcasts”.

degree of centrality both within the young Turks and in the network as a whole. This type of

border-spanning centrality has been linked to iconoclasticism, power, ands tress, painting a vivid

picture of factors which may have contributed to Gregorys exit. The official reasons given for his

expulsion were excessive independence and arrogance. Could he have been singled out as more

dangerous precisely because he had captured the attention and esteem of individuals outside the

clique? Rank of affiliation to group A turns out to be a good predictor for the order in which

the young Turks left the abbey: the second individual most affiliated with the Turks is Sampson’s

second identified leader, John (novice 1), who resigned shortly after Gregorys exit, trailed by Mark

(7) and the other novices.

Sampsons third and lowest-ranking leader, Winfred (12), does not buck this trend. Although

his relatively low association to group A belies his eventual identification as a leader of the Turks,

it accurately reflects his placement as the last one to leave the Abbey. Winfred’s undistinguished

position in our plot illustrates some biases of this analytic method, as well as some peculiarities of

his situation. Winfred identified strongly enough with his group that he was completely embedded:

all of his incoming and outgoing connections in the survey data lie within the Turks. The result

is that, although the random trees in which he appears are exclusively tied to group A, he simply

does not participate in nearly as many total evidence pieces as high-betweenness boundary spanners



4.3. EXAMPLE ANALYSIS: FUZZY GROUPS IN THE MONASTERY 61

like Gregory or John. As this shows, our evidence-generation technique could rightly be said to

put a premium on individuals with high betweenness. However, this is defensible when paired

with interpretation placing it in a social context. Recall that we generated random trees in order

to model iterative interaction processes within the graph, such as the spread of a rumor or the

slow accumulation of individuals to a casual gathering. It is easy to imagine an individual with

more diverse ties, such as Gregory, being drawn into a wider variety of gatherings. By being a

prolific interactor, Gregory may well have defined the Turks to the rest of the community, without

necessarily intending to or even identifying exclusively with them.

Evidence supports the distinction between Gregory’s celebrity and Winfred’s poster child stances.

In Sampson’s study, Winfred’s leadership was either absent or unobserved in the presence of the

two higher-profile leaders, and became clear only after their exit. Winfreds embeddedness seems to

reduce his significance at the time of our analysis, but as the split widened between the Turks and

the opposition, making positions like Gregory and John’s untenable, Winfred’s exclusive loyalty

became the crucial element of his ingroup leadership.

The membership and leadership of the loyal opposition party are similarly gathered around

group B in our plot. Peter (4) and Bonaven (5), who were identified by Sampson as the leaders of

the opposition, show the highest affinity for the group. Members described as less attached show

less affinity, and one such novice shows a split allegiance to the outcast group. The absence of any

links, save Gregory, between the opposition and the Turks serves to reflect the conflict between the

two groups. By contrast, the outcasts in group C have several members associated with other groups

as well. These cases show that fuzzy memberships can help elucidate not only the complexity of

an individual’s allegiances, but also the character of a group as exclusive or inclusive to interstitial

members.

Sampson originally identified a fourth group, but I restricted our analysis to three clusters

because the last was not a cohesive group fitting our definition. Sampson does not describe the wa-

verers as a set of individuals allied or interacting with one another, but as being in similar positions

of doubt between the two major groups, more akin to our interstitial roles. Additionally, previous

analyses have questioned the distinction between the waverers and the loyal opposition. Our own

analysis places two of them, Romul (10) and Victor (8), as weak members of the loyal opposition.

From a purely structural perspective they are tied more to the loyal opposition; whatever there

mental allegiance. Armand (13) is categorized as an outcast, owing less to his statements of affinity

for those individuals than from Basil’s (3) and Elias’ (17) connections to him.

Our classification of Armand as an outcast is in line with the discrete partitioning provided

by Doreian and Mrvar [36], who demonstrate that there was increasing evidence over time that



62 CHAPTER 4. COMMUNITY DETECTION

this foursome was a genuine group. Doreian and Mrvar used a block modeling approach optimiz-

ing structural balance, a measure of cohesion incorporating both positive and negative relations.

Interestingly, their partitioning is perfectly correlated with the groups to which each individual

is assigned maximal membership by FOG. I take these convergent results from different method-

ologies as encouraging validation in a setting for there is no known ground truth. The Doreian

and Mrvar study also includes a temporal analysis suggesting that in the final period of Sampsons

observation, two members of the Young Turks, Gregory and Mark, gave responses that fit better

within the Outcasts partition. Both of these individuals are marked as interstitial in the FOG

results, although Gregory’s departure is somewhat surprising considering his very strong alignment

with the Young Turks and weak connection to the Outcasts.

4.3.1 Example analysis: fuzzy groups among the southern women

Analyses of the DGG data, including the original, have generally partitioned the women into two

cliques2 that intersect on a few individuals or events. I use a spectrographic3 visualization scheme

in Fig. 4.4 to present the results of a 2-clustering of the southern women in greater detail than would

have been readable in the Sampson analysis. Bars of each color indicate each womans affiliation

with two groups derived from 8 and 6 of the party rosters respectively. Individuals are sorted

along the X-axis according to the difference in their membership levels, which maximizes the visual

distance between the cliques. I have also included a 2-mode network visualization for comparison

to the one I presented for the Sampson data.

The results of our algorithmic approach correspond strongly to the intuitive conclusions of

Davis et al. In group A, the core and primary periphery are reproduced precisely as plateaus in

the membership levels. Someone attempting to fit our analysis to their mode might draw slightly

different tiers for the group B, but the rough ordering of individual affiliations is the same. For

both groups, the most peripheral members are seen in the center of our chart, with low levels of

affiliation in both groups. Some of these members have been shown to be interstitial; for example

Davis et al. report that Ruth (9) was claimed by both cliques in interviews with members. Others,

such as Pearl (8) and Verne (10) were only claimed by members of the cliques to which our chart

shows greater affiliation.

There are many mathematical studies of the DGG data to which the H-FOG clustering corre-

lates. I will omit a pairwise comparison, as many of the results are significantly similar to Davis et

2I use clique here to maintain consistency with prior work, not to indicate a graph theoretic structure
3So named after similarity to overlaid graphs of element density used to differentiate substances in mass spec-

trometry.
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Figure 4.4: H-FOG 2-clustering of the DGG dataset, spectrographic (top) and network (bottom)

representations.
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al.s intuitive analysis described above, and a comprehensive metaanalysis has already been accom-

plished by Freeman. Instead, we focus on FOGs contribution to one prong of that analysis: the

core-periphery structure of the two cliques.

Davis et al. describe as core the individuals that are seldom excluded from their cliques functions.

I see that the most affiliated individuals in both groups demonstrate a propensity to appear with

the other group as well. This supports the argument I proposed with the Sampson data4, that

leaders of a group may either arise out of greater participation with other groups than do the less

active members, such as those in DGG’s primary and secondary members, or else experience more

pressure to do so.

In his meta-analysis, Freeman treated core-periphery as an ordering of individuals for each

group, without specifying that centrality in one group promoted distance from the other (although

that was a side effect of many techniques compared). FOG results certainly fit that mode, but the

juxtaposition of affiliations given above lends itself to an additional breakdown of several interac-

tions. We can separate individuals into several modes of interaction. We have central leaders, such

as the novices John or Gregory or the Southern women Nora and Katherine. There are embedded

leaders such as Winfred, Laura, or Brenna. There is a loyal second tier in each of the groups I

have analyzed, and finally a set of truly interstitial individuals who participate at low levels in both

groups.

From our observations of these roles in Sampson data, we might issue the prediction that a

thoroughly embedded member, such as Brenda or Flora, would flourish if there were a falling out

between the two groups. On the other hand, if good relations continued between the groups, our

profile of an emergent leader might better fit individuals such as Ruth or Helen: those with strong

ties to one group, but some degree of participation with the other. Davis et al. do not examine

conflict between these cliques and describe no events that would be telling regarding our first

hypothesis. However, they completed a larger study of many cliques, in which they used interstitial

members to examine relations between social classes associated with each clique. They describe a

class of on the way up individuals, who participate in events outside their clique in order to socialize

with those above them in social class.

The interpretation of interstitial members as a separate class is supported by Doreian et al. [34],

wherein an error-averse block-model partitioning of events revealed that Pearl and Dorothy attended

only events attended by members of both groups. For the block modeling approach, which considers

extra-group connections when assigning groups, this was sufficient evidence to place them in a

4Since the DGG analysis is based on direct observations rather than synthetic observations from random trees,

there is not the same concern about overemphasizing centrality that existed with the novices.
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distinct group. FOG, which permits overlap but optimizes only for intra-group cohesion, places

them instead in both groups.

By analyzing interstitial members, we can use FOG to capture some of the same structural

insights provided by block modeling. However, some structural subtleties would not be captured

by FOG. For example, we would be unable to distinguish between individuals like Pearl and Dorothy

that attended only mixed events, and individuals who attended no mixed events but attended some

from each group.

4.4 Parameter recovery experiments

As with all unsupervised inference tasks, the fact that underlying communities are never directly

observed means that algorithms for detecting them must be evaluated either in relation to a sec-

ondary objective5 or using artificial data in which the generating parameters are known. This

section describes the latter. I generate group parameters from several underlying distributions, and

for each set of parameters generate artificial link data. I apply each of the algorithms above to the

resulting links, and evaluate them based on how quickly they can achieve what level of accuracy in

recovering the originating distribution.

4.4.1 Generation of parameters and data

In section 4.2.5 I defined a prior θ ∼ Dirichlet({α}k), which can be directly sampled to generate

artificial emission probabilities. An actual emission vector of any size is then drawn as independent

samples from the resulting PMF.

The inclusion probability prior γi ∼ Beta(ε, ε) is less suitable for generating the group matrix,

because independent inclusion probabilities will result in diffuse, non-cohesive groups in which all

entities have similar observation probabilities regardless of group. To generate cohesive groups, I

first draw a group vector g ∼ Dirichlet({αγ}k) from a second Dirichlet prior, whose parameter

αγ determines expected cohesion. The result is a normalized vector such that drawing P (li | ei =

j) = gj,i would result in expectation in one entity per link. To generate links with an expected

count of entities q, we use instead the probability that at least one of q draws from g, such that

γi,j = 1− (1− gi,j)q.

The full algorithm for generation of a random link matrix is given below.

5Examples of secondary objectives include prediction of events or replication of expert analysis; the qualitative

analysis in section 4.3 is a bit of each.
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4.4.2 Evaluation of fit

Parameter values are the ultimate outputs of interest for each of our fitting values; however, they

are difficult to compare directly because of the many symmetries possible in the parameteriza-

tion. For example, any permutation on the group orderings amount to the exact same groups and

will generate links with the same probability. Since FOG parameters ultimately correspond to a

distribution over links, we can measure their similarity using the Kulback-Leibler divergence,

(4.10) DKL(θ,Γ ‖ θ̂, Γ̂) =
∑

l∈[0,1]n

logP (l | θ,Γ)
logP (l | θ,Γ)

P (l | θ̂, Γ̂)

Even if equation 4.11 were efficiently computable (it involves an intractable summation over

every possible link), it would be a noisy diagnostic of the performance of algorithms that train based

on a very small sample of the space. Recent work on estimating intractable KL divergences has

shown that monte-carlo sampling can be used effectively, especially in conjunction with importance

sampling [52]. Based on this technique, the faster and more useful estimate below re-uses the

random links on which groups were trained to compute a monte carlo estimation of DKL.

D̂KL(θ,Γ ‖ θ̂, Γ̂) = z
m∑
i=1

P (li | θ,Γ)
log zP (li | θ,Γ)

log z′P (li | θ̂, Γ̂)
(4.11)

where z = (
m∑
i=1

P (li | θ,Γ))−1(4.12)

z′ = (

m∑
i=1

P (li | θ̂, Γ̂))−1(4.13)

A second challenge in creating a stable statistic for comparing goodness-of-fit is the fact that not

all generator distributions, and not all samples from the same distribution, are equally learnable.

Highly entropic distributions and samples that, by chance, poorly represent the probability of mass

of the distribution will reduce performance for all parameter estimation algorithms. This makes it

hard to compare performance across repeated experiments, since variations in performance may be

amplified by problem difficulty. I control for this in two ways.

First, I estimate KL divergence not from the true generating distribution, but from new pa-

rameters fit directly to the emitted data with knowledge of the emission vector: D̂KL(θ̄, Γ̄ ‖ θ̂, Γ̂),

where θ̄ =
∑m
j=1 I(ej=i)

m and Γ̄ = Γ̂(L | e). Since each of the algorithms is constrained to producing
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parameters which are optimal given a latent emission vector, this distribution serves as a baseline

“best fit possible given the data”, adjusting for some of the variance in the data.

Since this does not fully account for the varying difficulty in learning samples where the groups

themselves are more entropic or overlapping, as a final step I normalize divergence scores by the

best divergence score achieved by any of the algorithms. This gives each algorithm’s performance

as a multiple of the winner’s.

4.4.3 Convergence profiles

To analyze convergence properties of the 4 FOG algorithms, I computed 100 FOG distributions

using the method described in section 4.4.1. Each distribution involved k = 4 groups of n = 20

entities, and from each one m = 100 links were sampled. h-FOG, k-FOG soft and hard variants,

and α-FOG were each used to reconstruct the distribution from samples. On each iteration of each

algorithm, I recorded the computation time thus far and the normalized estimated KL divergence

from the original distribution as described in section 4.4.2. The tests were performed in single

threaded mode on an Intel Core i7 CPU running at 2.67 gHz, with all algorithms implemented in

the R interpreted language.

The results of this analysis can be seen in figure 4.5, with the runs for each algorithm plotted in

light grey. Overlaid on each graph is a kernel regression of normalized estimated KL-divergence with

time, providing a rough guide to the convergence profile of the respective algorithm. It’s important

to note that each of the FOG algorithms contain opportunities for system-specific optimizations

and parallelization, as well as retrieval of anytime results, making a direct comparison of physical

runtimes to convergence on the same machine is less useful in describing performance tradeoffs.

Nevertheless, there are some general convergence features evident.

h-FOG is both the slowest algorithm and achieves the worst parameter estimates overall (final

fit performance is analyzed further in section 4.6). However, its deterministic nature means that

running times are consistent, and visual inspection suggests that most runs converge nearly mono-

tonically toward the source distribution as groups are merged. This suggests that our sample size

is large enough to contain information to guide the algorithm toward the source distribution, and

that our greedy agglomeration criterion extracts this information.

Exceptions to this generalization occur at very low numbers of groups, where some run graphs

show large increases in KL-divergence in the last few iterations. Since h-FOG iterations correspond

inversely with the number of inferred groups, the graphs show that the fit h-FOG achieves with a

number of groups greater than the source distribution is often competitive with the other fitting
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Figure 4.5: Convergence profiles for parameter recovery experiments.

algorithms, but the grouping at k = 4 has twice the divergence or more. It may be that the final

few merges in the algorithm effectively “pay the price” for the worst decisions made greedily in

early iterations. As a practical matter, this suggests that, if the link distribution (rather than the

groups themselves) is the object of interest and h-FOG must be used, it may be preferable for an

analyst to specify a larger number of groups than they expect are actually present in the data.

The hard k-FOG algorithm shows the fastest convergence out of the set, usually reaching a
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factor of 10 of the optimal convergence for any algorithm within one second. However figure 4.5b

shows some degree of sensitivity to initial starting conditions and the potential for local maxima,

as some plots converge early and with poor performance. By contrast, the soft variance of k-FOG

shows only two test cases in which it was a factor of 10 from the optimum divergence, and only 2

more greater than a factor of 5. An interesting feature of the soft k-FOG convergence is the slow

initial convergence, followed by a rapid period usually timed between the first and third half-second

of computation. Both k-FOG algorithms tend not to detect convergence for a significant amount

of time after nearing their optimal solutions. This is actually more pronounced than shown in

figure 4.5 as the domain axes were truncated to show the most interesting part of the convergence

curve; it is reported further in section 4.6. However rapid early convergence means that anytime

variants of the algorithms could be useful.

Figure 4.5d shows that while α-FOG often reached solutions competitive with those produced

by the k-FOG algorithms, and is the most consistently monotonic in its convergence. However,

it often took more than 100 times as much computation time, and frequently terminates at far

from-optimal solutions. Long flat regions in the convergence paths, especially those with poor

performance, suggest that many iterations are being spent by the algorithm without improving

the solution. In the following section, I introduce an improvement leading to more consistent

performance.

4.5 Improving α-FOG performance with residual priority updates

Although EM algorithms are traditionally defined in terms of synchronous expectation and max-

imization steps, Meng et al. [83] point out that for some problems other schedules interleaving

partial expectation and maximization updates might be more tractable. This is the case with α-

FOG, where bookkeeping regarding new or retired groups is most convenient when only one link

changes groups between updates.

The opportunity to define an arbitrary update schedule begs the question: which is best? And,

is a single schedule appropriate for the duration of the algorithm? The slowdown in convergence

rates on the EM-based algorithms in the prior section suggests that, especially as the algorithms

progress, significant computation is spent on consideration of links that are already in their optimal

configuration. Is it possible to spend more of our time adjusting links that are sub-optimally placed?

A similar problem was approached by Elidan et al. in [38] regarding the schedule on which

messages are updated during belief propagation. I extend their work and explore the relationship
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between EM and belief propagation further in the following chapter. In this section, I adapt their

technique of prioritization by residual for FOG clustering.

The core idea in residual belief propagation is to compute all potential parameter updates and

insert them into a priority queue according to a heuristic estimating their impact on the fitness of

the parameter estimates. Since the likelihood of our fit is the product of link likelihoods, I take the

change in log likelihood for each link as its residual, so that the maximum improvement is executed

first.

After each update, other updates whose optimality or score might be affected by the just-

executed one must be reconsidered, so performance is best when the distribution is factored such a

way that each update affects a small subset of the others. In the context of a probabilistic graphical

model, the graphical structure dictates this factorization. In our context of hard clustering, we can

achieve this factorization by alternating assignment of a single link to an originating cluster with the

optimization of the source and destination clusters’ parameters. Doing so requires us to reconsider

the likelihood of assignments of each link to just those two.

The α-FOG-Residual algorithm is given below. For consistency I use a matrix based annotation

similar to that for h-FOG to keep track of likelihood improvements for each link. In practice, both

algorithms can be implemented more efficiently using a heap-based priority queue. In α-FOG’s

case, queues would be used in two places: first to maintain the optimal assignment for each link,

and second for each link the residual of its optimal assignment.
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Maintenance of the priority queues for each variable makes each iteration of α-FOG-Residual

O(m log k+mn), more expensive than α-FOG’s O(mk). Does the prioritization of more important

updates make up for this? Figure 4.6 shows that it does, with residuals competitive with those of

the k-FOG algorithms reached with greater consistency and within one minute, rather than the

original α-FOG’s seven.
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Figure 4.6: Convergence profile for α-FOG-Residual.

4.6 Performance comparison summary

Table 4.1 summarizes performance data for each of the algorithms upon convergence on the 100 test

runs. Time and KLD ratios are captured as in the previous sections, and the table includes counts
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of notional iterations designed to count the number of times the outermost loop with inconstant

frequency is called. Notional iterations are defined as follows.

• For H-FOG, I count each merge operation as k′ iterations, where k′ is the number of groups

remaining.

• k-FOG algorithms count complete cycles of both E and M steps and annotate each such pair

as m notional iterations.

• In α-FOG, each assignment of a link to a group counts as 1 notional iteration.

The summary statistics on h-FOG suggest little to recommend it relative to the other algorithms,

as it takes longer and produces worse groupings with greater variance than all others besides α-

FOG. The intended motivation of producing groupings for all potential k might be better served

by executing k-FOG-Hard for all the values within a certain range. In spite of these limitations,

H-FOG might still be of interest in situations where hierarchical relationships between groups is

itself hypothesized, as a way of exploring that structure in particular.

Comparing the k-FOG algorithms, hard and soft variants offer a pronounced tradeoff between

speed and quality of fit. While the standard deviation of KLD ratios for both algorithms is high,

a t-test statistic places the true mean for k-FOG-Soft higher than that for k-FOG-Hard with a

p-value of 0.96%, while k-FOG-Hard is at least 5 times faster on average with confidence beyond

machine precision. k-FOG-Hard may be the only algorithm applicable to large scale data or real-

time applications requiring low latency. The result is unsurprising, given that k-FOG-Hard can

be viewed as a constrained version of k-FOG-Soft in which emission distributions are constrained

to point mass probabilities. The coarser configuration space can be searched more quickly, but a

precise solution is impossible. In future work, it might be interesting to use hard clustering as a

hot-starting technique, to be improved on by soft clustering.

One challenge in comparing convergence profiles between the algorithms is that none of the

algorithms except H-FOG have a guaranteed time until convergence. Another is that qualities of

data other than size might impact time until convergence. For example, data with more intermixing

between groups might be relatively more challenging for α-FOG variants, because determining the

exact number of groups is more difficult. It is advisable for practitioners to try both k-FOG and

α-FOG variants on subsets of their own data to consider its properties, if running both on the

whole dataset in infeasible.

α-FOG in its original form is impractical for a dataset of this size, taking almost as long as

h-FOG but with worse and more variant fits. In contrast, α-FOG-Residual offers performance
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similar to k-FOG-Hard and only three times slower than k-FOG-Soft. This performance gap might

be decreased further by an implementation with efficient priority queues (the one used matches the

code provide in the previous section).
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Algorithm 4 H-FOG

Require: L ∈ [0, 1]m×n {link matrix}
Require: k ∈ ZZ < m {number of groups to estimate}
Require: ε ∈ IR {membership prior parameter}
Ensure: e,Γ, θ {estimated emission vector and optimized group parameters}

for i = 1 to m do

{initialize one group per link}
ei ← i

θi ← 1
m

γi ← γ̂(i); ε

end for

S ∈ IRm×m ← 0m×m {initialize score matrix}
for i = 1 to m− 1 do

for j = i+ 1 to m do

si,j ← sH(i, j)

end for

end for

for m− k iterations do

{merge until k groups remain}
i, j ← argmaxi,j si,j

for x = 1 to m do

if ex = j then

ex ← i

end if

sj,x ← 0

sx,j ← 0

θi ← θi + 1
m

end for

for x = 1 to n do

γj,x ← 0

end for

θj ← 0

γi ← γ̂(i); ε

end for
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Algorithm 5 k-FOG

Require: L ∈ [0, 1]m×n {link matrix}
Require: k ∈ ZZ < m {number of groups to estimate}
Require: ε ∈ IR {membership prior parameters}
Ensure: e ∈ [1 . . .k]m,Γ ∈ IRk×n, θ ∈ IRk {estimated emission vector and optimized group param-

eters}
e′ ← 0m

for i = 1 to m do

e′i ∼ Uniform(1 . . . k) {assign each link to a random group}
end for

repeat

e← e′

for i = 1 to k do

{Maximize groups given link supports}
γi ← γ̂(i; ε)

θi ←
∑m
j=1 I(ej=i)

m

end for

for i = 1 to m do

{Maximize link assignments given group parameters}
e′i ← argmaxj θjP (li | γj)

end for

until e = e′
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Algorithm 6 α-FOG

Require: L ∈ [0, 1]m×n {link matrix}
Require: k ∈ ZZ < m {number of groups to estimate}
Require: α ∈ IR {concentration parameter}
Require: ε ∈ IR {membership prior parameter}
Ensure: e ∈ [1 . . .k]m,Γ ∈ IRm×n, θ ∈ IRm {estimated emission vector and optimized group pa-

rameters}
e′ ← 0m {links initially unassigned}
repeat

e← e′

for i = 1 to m do

e′i ← argmaxx P (ei = x | e−i;α)P (γx | e)P (li | γx) {Assign link to optimal group}
Γ← γ̂(e′,L; ε) {Adjust group parameters}

end for

until e = e′
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Algorithm 7 Generation of random parameters and links

Require: n ∈ ZZ {number of entities}
Require: m ∈ ZZ {number of links}
Require: k ∈ ZZ < m {number of groups}
Require: q ∈ ZZ < n {expected entities per link}
Require: αθ ∈ IR {frequency concentration parameter}
Require: αγ ∈ IR {cohesion parameter}
Require: ε ∈ IR {membership prior parameter}
Ensure: Γ ∈ IRm×n, θ ∈ IRm {random FOG parameters}
Ensure: e ∈ [1 . . .k]m,L ∈ [0, 1]m×n {emission vector and links}

e′ ← 0m {links initially unassigned}
{Draw θ}
θ ∼ Dirichlet({αθ}k)
{Draw relative likelihoods for groups}
G ∈ IRk×n

for i = 1 to k do

θ ∼ Dirichlet({αγ}n)

end for

{Convert relative likelihoods to observation probabilities}
Γ ∈ IRk×n

for i = 1 to k do

for j = 1 to n do

Γi,j ← 1− (1− gi,j)q

end for

end for

{Monte carlo draw emissions and links}
for i = 1 to m do

ei ∼ θ
for j = 1 to n do

Li,j ∼ Γj,ei

end for

end for
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Algorithm 8 α-FOG-Residual

Require: L ∈ [0, 1]m×n {link matrix}
Require: k ∈ ZZ < m {number of groups to estimate}
Require: ε ∈ IR {membership prior parameter}
Ensure: e,Γ, θ {estimated emission vector and optimized group parameters}

for i = 1 to m do

{initialize one group per link}
ei ← i

θi ← 1
m

γi ← γ̂(i); ε

end for

S ∈ IRm×m ← 0m×m {initialize score matrix}
for i = 1 to m− 1 do

for j = i+ 1 to m do

si,j ← sH(i, j)

end for

end for

for m− k iterations do

{merge until k groups remain}
i, j ← argmaxi,j si,j

for x = 1 to m do

if ex = j then

ex ← i

end if

sj,x ← 0

sx,j ← 0

θi ← θi + 1
m

end for

for x = 1 to n do

γj,x ← 0

end for

θj ← 0

γi ← γ̂(i); ε

end for
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Algorithm
iterations time (s) KLD Ratio

µ σ max min µ σ max min µ σ max min

h-FOG 44840.00 0.00 44840 44840 596.29 0.89 598.06 593.16 9.21 17.15 153.26 1.42

k-FOG-Hard 2880.00 1003.63 7200 1500 2.05 0.78 5.44 0.97 7.26 13.59 118.78 1

k-FOG-Soft 26847.00 17608.75 110700 8700 20.55 13.61 85.69 6.60 3.23 7.20 69.18 1

α-FOG 1947.00 3620.65 20100 600 328.37 693.84 4758.76 44.25 13.97 24.19 107.08 1

α-FOG-Residual 265.12 20.34 326 228 60.52 4.70 74.66 52.23 6.24 16.58 162.67 1

Table 4.1: Performance summary of FOG algorithms at convergence.
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4.7 (Infinite) Residual Expectation Maximization (REM)

As generalized in [32], expectation maximization algorithms proceed by alternating between op-

timization of all missing data expectations (the expectation step) and all distribution parameters

(the maximization step). ECM algorithms [83] divide the latter step into a series of conditional

maximizations, in each of which a subset of distribution parameters are optimized while the others

are held constant. α-FOG and α-FOG-Residual operate on a similar but inverted principle, wherein

the expectation step is instead subdivided into a series of conditional optimizations. The algorithm

class defined below generalizes this strategy.

Definition 11 A Conditional Expectation Maximization (CEM) algorithm is defined on a like-

lihood function L(x | θ), where x are missing data and θ are unknown parameters, and partition

sequence Ω, of which each member ω(i) is a binary vector indicating a subsets of the variables x

which will be kept constant during a series of conditional maximization steps. Let the set-valued

function N(ω,x) yield those binary vectors {x′ | ∀iωi = 1⇒ xi = x′i}. A CEM is characterized by

the following computed sequences.

(4.14) x(i+1) = argmax
x∈N(x(i),ω(i)b)

L(x | θ(i))

(4.15) θ(i+1) = argmax
θ

L(x(i+1) | θ)

It should be clear from inspection that each iteration of a CEM nonstrictly increases the likeli-

hood function, and that fixed points reached by this process are also fixed points of any maximum a

posteriori EM or ECM algorithm. Like the EM or ECM algorithms, for most distributions a CEM

will converge on different local maxima in a varying number of steps depending on the initial condi-

tions of the algorithm. However, for distributions with specific factorizations, incremental updates

to the expectations may permit easy computation of the M-step. As an example, a CEM for a latent

cluster distribution which modifies individual cluster need only update parameters pertaining the

original cluster and the newly assigned cluster on each iteration. If the clusters parameters can be

incrementally updated, such as those in a mixture of exponential family distributions, then only

the attributes of the reassigned data point need to be considered in making this update.

Both α-FOG and α-FOG-residual are CEM algorithms for the same distribution, but the per-

formance achieved by the residual-prioritized version is significantly higher. This suggests that

the schedule on which these partitions are updated can have a large effect on both convergence

speed and the quality of local maximum converged upon. The policy of considering all incremental

updates and executing the one which causes the greatest is formalized in the definition below.
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Definition 12 An Residual Expectation Maximization (REM) algorithm is defined on a likelihood

function L(x | θ), where x are missing data and θ are unknown parameters, and a partition set S,

of which each member ω ∈ S is a binary vector indicating a subsets of the variables x which will be

kept constant during a series of conditional maximization steps. The REM algorithm is the CEM

algorithm whose partition sequence is determined by the following equation.

(4.16) ω(i) = argmax
ω∈S

maxx∈N(x(i),ω) L(x | θ(i))

L(x(i) | θ(i))

The double maximization involved in determining the next update makes REM intractable for

many distributions, but for certain distributions an efficient data structure can facilitate this com-

putation. In FOG and other latent cluster distributions, once the initial probabilities of membership

for each entity in each cluster have been computed, updating the assignment of a single member

to a new cluster necessitates the recomputation of only those assignment likelihoods involving the

source and destination clusters. As a result, it is possible to perform the update and maintain a

table allowing the determination of the next update in time linear in the number of entities being

clustered. While this makes each update more expensive than those for a random schedule, the

performance of α-FOG-residual suggests that this is eclipsed by the increase in convergence rate.

Another benefit of maximizing expectation for one entity at a time is that it allows the in-

cremental exploration of certain distributions with a theoretically infinite number of parameters.

Under the Dirichelet-process priors used in the generative distribution for the α-FOG algorithms,

the likelihood associated with an observation’s assignment to a previously unobserved group is in-

dependent of all other factor parameters. This allows for parameters of new groups to be initialized

only when an entity is assigned to it, and decommissioned when that entity is done. The definition

below generalizes a class of distributions for which this is possible.

Definition 13 An infinite clustering likelihood is a latent clustering likelihood with the additional

properties that

• The cluster parameter matrix Θ is presumed to have infinite first dimension.

• The clusters are exchangeable, in that the likelihood is identical for any permutation of the

cluster parameter matrix and the assignments in the clustering relation.

The exchangeability requirement ensures that the likelihood of emission by a previously unob-

served cluster is unchanged by that cluster’s index, allowing us to compute the likelihood at most
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once for each entity in order to consider its assignment to a singleton cluster. We refer to this

likelihood as l0(yi).

Although not a requirement for our algorithms, it bares repetition that for most applications,

interesting infinite clusterings arise from functions with a tension between the size of clusters

and their cohesion. If cohesion is overemphasized, the distribution tends toward small, overfit

clusters; if cluster size is overemphasized then giant clusters arise capturing only mean attributes

of the population. In this thesis I return to the Dirichelet distribution, which elegantly specifies

expectations regarding cluster sizes and allows the tradeoff to be adjusted by a single parameter.

The following pseudocode illustrates the efficient application of an REM algorithm to an infinite

clustering distribution.
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Algorithm 9 Infinite Residual Expectation Maximization (iREM) Clustering

Require: Y {observable attributes of entities}
Require: L {infinite clustering likelihood}
k ← 0 {number of inferred clusters}
x← {−1}n

Θ← {0}∞×d {latent cluster parameters}
l← {0}n {likelihood of current assignments}
S, r← ∅ {keyed priority queues for scores and residuals}
ε← 1

2 mini l0(yi) {minimum singleton cluster likelihood}
for i = 1 to n do

INSERT (si, 0, l0(yi)), INSERT (r, i, l0(yi))
ε ) {initialize queues with assignments to singleton

clusters}
end for

repeat

i← POP (r) {draw entity with greatest residual}
j ← xi, j

′ ← PEEK(Si) {get old and new assignments}
if j′ = 0 then

k ← k + 1, j′ ← k {create a new cluster}
end if

if j 6= xi then

xi ← j′

UPDATE(j)

UPDATE(j′)

li ← l(yi | θj′)
end if

until | r |= 0
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Algorithm 10 UPDATE Subroutine

Require: j {cluster to update}
z← {i′ : xi′ = j} {cluster members}
if | z |= 0 then

DELETE(j)

else

θj ← argmaxθ
∏
i′∈z l(yi′ | θ) {update new parameters}

for i′ = 1 to n do

l′ ← l(yi′ | θxi
)

UPDATE(si′ , xi, l
′) {update assignment likelihoods}

UPDATE(r, i′, PEEK(si′)/li′) {update residuals}
end for

end if

The pseudocode above makes use of two nontrivial data structures and associated subroutines.

• The parameter matrix Θ is given infinite dimension. The associated DELETE(j) subroutine

has the symantics that (1) entries associated with j should be removed from S, (2) all indices

j′ > j should be decremented for purposes of indexing Θ and where used in x and as keys in S,

and (3) that k should be decremented. In practice, this is easily implemented by maintaining

Θ as a hash map from cluster identifiers to parameter vectors. The space required for Θ

should not exceed a factor of the largest number of clusters populated during runtime, which

cannot exceed the number of entities n.

• The keyed priority queues S and r store a given key no more than once, while associating a

real priority value. The INSERT (q, i, j) routine inserts key i into queue q with associated

priority j, overwriting any previous priority associated with i. The PEEK(q) operation

retrieves the current key with top priority, and the POP (q) operation does the same while

removing it from the queue. This can be implemented efficiently with a combination of a

hash map and a heap, where the insert operation performs local rotations to rebalance when

an update breaks heap invariants. All operations should be worst-case logarithmic in heap

size, and the heaps themselves reach maximum sizes of n or k.

If we implement as above, assume constant evaluation time of L, and use the fact k ≤ n to

simplify our notation, we can see by inspection that the a single iteration’s time complexity is

determined by the time complexity of UPDATE, which is O(n log n). By contrast, an iteration of
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a CEM algorithm with fixed update schedule requires only O(k+d) time, as we consider an entity’s

emission likelihood from k clusters and then update d parameters. However, iterations of REM

tend to be closer to linear in n, as frequently k << n and keyed priority queue updates require

little or no changes to the structure of the heap. As the time results for α-FOG-Residual show, the

benefit of targeting updates can more than make up for their expense.

4.8 Discussion

I set out to introduce a new quantitative tool for inferring complex relationships between indi-

viduals and groups, allowing varied degrees of participation in multiple groups. I proposed the

FOG stochastic model, which dictates relationships between individuals, groups, and observable

interactions as a generative model for link data. To make FOG a useful analysis tool, I introduced

the H-FOG, k-FOG, and α-FOG algorithms intended to assist exploratory group discovery, fast

composition estimation with a fixed number of groups, and estimation of an unknown number

of groups respectively. To investigate single-mode network data, I implemented a simple method

for generating rich multi-entity links from a pairwise network based on a simplistic simulation of

interaction processes.

4.8.1 Validation

One approach to empirical validation of grouping algorithms is to compare our statistical analysis

to that of anthropologists like Sampson, who were able to relate their intuitive observations to

unforeseen events in the social group. Can fuzzy grouping rediscover social patterns that stood out

to ethnographers in the field?

In the two datasets I studied, the answer is yes. The discrete groups identified by both Sampson

and the DGG team were nearly identical to the list of individuals with greatest affiliation to each

group in our analysis. Additionally, substructures and leadership roles identified by the original

authors corresponded strongly to the levels of affiliation I discovered. FOG sits well among a variety

of mathematical approaches which have supported the original intuitive analyses. However, these

have usually relied on separate techniques to distinguish groups, leaders, and internal structures.

One advantage of FOG is the ability to unify these multiple levels of analysis under a simple model.

A more quantitative test, which has been applied to link analytic methods including k-Groups

and iterative deduplication, is the ability of a method to rediscover groups from artificially generated

data. I performed such a parameter recovery analysis by first drawing group parameters from a
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random distribution intended to produce realistic data, then estimating the KL divergence between

the discovered groups and a distribution fit directly to the samples. While the results cannot be

interpreted directly with respect to a general grouping task, all three algorithms showed significant

convergence over time from a naive initial hypothesis toward the target distribution.

The k-FOG algorithms, which requires the most prior information (in the form of number

of latent groups) and provides the minimal output (a single grouping of that order), converged

faster and with lower divergence from the originating distributions on average. Interestingly, it also

showed a lower variance than other methods in divergence, suggesting limited susceptibility to local

maxima. The speed / performance tradeoff between the two algorithms motivates exploration of a

hybrid approach, in which hard clustering is used as a hot-start for soft-clustering inference.

H-FOG displayed a deterministic runtime much slower than k-FOG’s, and reached much lower

levels of accuracy even when evaluated at the correct number of groups. α-FOG was similarly im-

practical, showing worst-case time to convergence two orders of magnitude greater than the k-FOG

algorithms in some pathological cases. However, the α-FOG-Residual was surprsisingly competitive

in performance, given its additional challenge in estimating the number of latent groups, and could

be practically applied to small datasets like the 300 link test cases examined. The performance

improvement generated by residual based updates is promising and potentially applicable to other

EM algorithms.

4.8.2 Interstitial Roles

The existence of interstitial roles, where an individual retains several group affiliations, was our

principle motivation for developing a fuzzy grouper. I identified many such individuals in our

analysis, fitting several profiles. With great frequency, the most apparent leaders of a group had

weak ties to other groups as well, as did those members with the least affiliation to any group.

The differentiation of these two roles, as well as the surprising result that most groups contained

a well-embedded middle tier, would be difficult without FOGs novel properties: the combination

of multiple memberships and degrees of membership. As FOG is applied to additional datasets I

expect that a better understanding of individual roles based on multiple memberships will emerge.

The FOG approach holds promise of providing a mathematical base for capturing and defining

some critical types of social roles not heretofore measurable.

It is worth noting that FOG did not always identify as interstitial the individuals whom I

would expect. In some cases, such as with Sampsons waverers, individuals who were considered

interstitial by an observer were placed in single groups by FOG. Conversely, some of the secondary
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clique members in the DGG dataset would appear to be interstitial on a reading of our charts, but

were only claimed by a single clique in specific surveys conducted by Davis et al. The distinction

between members who are simply weakly connected and those who fill an actively interstitial role

may be beyond our level of analysis. Alternatively, noise may have been introduced in the specific

data I examined, or results may have been misinterpreted by the original observers. Since analysis

of interstitial roles is a vital component of FOG, future work should investigate in depth what

factors in data affect our ability to differentiate roles.

4.8.3 Generating link data from networks

Although the theory underlying the FOG model requires link data that indicates a shared context

between members, I are optimistic about the ability to examine single-mode network data by

generating fake data from simulated interactions. In the Sampson data, I was able to affirm

existing knowledge about the monastery social groups using this approach, while generating new

theories.

A crucial aspect of this analysis was to connect the final results with the assumptions under

which link data was generated. Since Breiger et al.s matrix indicated relationships between novices

that could lead to interaction, I built our link generator as a simulator of social contexts that spread

infectively through iterative interactions. This type of link increased the observation frequency

of high-betweenness individuals, but we might expect those individuals to be disproportionately

represented in real data recording this type of interaction. Understanding this bias helped us

interpret the difference between embedded and interstitial members when interpreting the role of

novice Winfred (12), the last leader of the young Turks.

A potential criticism of random link generation is that it injects variance into our analysis. In

this study, I approached the problem by generating larger sets of random trees until differences

between runs were below the threshold of our qualitative analysis. However, increasing the number

of samples comes at a significant computational cost. I attempted a similar process using a network

from a cleaned corporate email corpus [33] containing 150 users, and were still experiencing visible

variance between results when using samples of 450 links at an average runtime of over 8h. Notably,

some networks drawn from 2-mode data maybe easier to analyze in their original form. I was able

to perform an informative analysis of the same emails in only 30min by multi-recipient emails rather

than random walks on the incidence network as observations.

Another peculiarity of the random-tree link model is that it discards the directionality of links.

Since FOG interprets only the presence or absence of an individual in a link, no distinction is drawn
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between individuals originating a random observation and those added subsequently. This affects

the placement of individuals like Amand(13), who appeared in many interactions with individuals

whose admiration or affection he did not reciprocate. One could again argue that many types of

real data would have similar confusion, but it is also possible that a link model could be adjusted

to include this information.

Networks of different relations may require different link models. In a formal communication

network, such as a corporate hierarchy, where messages pass along a fixed route from source to

destination, a random, directed walk would be more appropriate than a random tree. It might

be convenient to analyze 2-mode networks by simply interpreting one of the modes as links, but

that decision should similarly depend on the type of relationship represented in the network. Link

generation for multi-mode networks is another direction for potential improvement.

4.8.4 Analyzing and visualizing fuzzy relationships

Social groups with binary memberships can be analyzed by common statistical techniques. For

example, when Davis et al. introduced the southern women dataset as overlapping cliques, they

were able to investigate the character of each clique by taking aggregate statistics over its members.

The same analysis would be non-trivial for a FOG cluster. What is the mean income of the members

of a fuzzy group? The question is especially difficult because our results are intended to denote

a level of participation, and not necessarily the degree to which members are representative of

their group. If fuzzy groupings become a useful analytic tool, new measurements will have to be

developed or adapted to properly interpret the new information given.

I tried to uphold several principles in my qualitative analysis of derived clusters. First, member-

ship values were not examined independently of the context of other memberships held by the same

individual and to the same group. Groups or individuals may have different average memberships,

for reasons that have less to do with the actual importance of those memberships than with the

nature of group events or the way data was collected or generated. Secondly, the novel strength

of grouping with multiple, variable memberships is the ability to compare several simultaneously

occurring memberships in individuals. FOG is intended to define and investigate roles that are

involve multiple memberships, rather than to rehash issues of internal group structure that have

been examined by other algorithms.

Visualizations play an especially important role by influencing the types of patterns we can

identify intuitively. I have presented two visualization paradigms in this chapter, one indicating

individuals memberships to groups as a weighted two-mode network, and the other a spectrographic
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view providing all membership levels explicitly in bar chart form. As with most visualizations of

overlapping clusters, placement of individuals can be difficult as the page does not have enough

dimensions to represent all association patterns. I had few enough groups in both of my analyses

that we were able to position individuals for reasonable clarity, but this would not be true in more

complicated datasets. I have experimented with several heuristics for laying out more than two

groups in spectrographic figures, but more work needs to be done in this area.

4.8.5 Efficient EM algorithms for an unknown number of clusters

The generalized EM algorithm class of [32] has seen a huge variety of variations, perhaps because

the problems of creating structured likelihood functions and designing incremental update schedules

which exploit that structure are so closely related. Each of the “innovations” in my most generally

successful algorithm, α-FOG-residual – optimizing the expectation of individual entities, using a

residual prioritization schedule, and dynamically populating sparse clusters from an infinite set –

have been used in other local search algorithms. For the more general problems of sampling from

or estimating posterior probabilities in non- or infinite-parametric distributions, there exists a more

robust literature under the hierarchical Bayesian paradigm. In defining the REM algorithm class, I

have tried to incorporate each of these properties in an efficient and simple to implement structure

applicable to a narrow but frequently encountered class of clustering problems. In the following

chapter, I generalize REM for graphical structures that go beyond clustering and address temporal

(and potentially spatial) regularities.

4.8.6 Final thoughts and remaining questions

The stochastic model and algorithms presented in this chapter provide a starting point for detec-

tion of fuzzy, overlapping groups in a number of contexts. The input data may be a bimodal or

unimodal relation, and by using H-FOG, k-FOG or α-FOG respectively the analysis mode may

be very exploratory or utilize prior knowledge of the analyst. However, there exist many desirable

extensions, such as the inclusion of attributed data or simultaneous analysis of multiple relations.

In this direction, it is possible that FOG would benefit from integration with ERGM models [107]

[103] [53], which can already express distributions over graphs including these characteristics. The

k-FOG and α-FOG algorithms are themselves instantiations of the expected conditional maximiza-

tion algorithm class; FOG could be generalized in such a way as to permit further instantiations

itself.
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In my review of previous literature, I mentioned that graph partitioning was of interest for

the parallelization of certain algorithms. Since the input graphs to such algorithms often derive

from “natural” phenomena, including social networks, recent work in this area has focused on

indentification of and adaptation to common properties in such networks, such as scale-free edge

distributions [4]. Interestingly, one outcome of this research has been the realization that many

naturally ocurring networks may have no “good” cuts, in the sense that the subgraphs larger than

a certain size preserve meaningful properties of the original network [70]. The FOG algorithms,

because they do not rely on strict partitionings, may be interesting in describing substructure

at this higher level. However, because FOG does not provide a strict partitioning, it is not an

appropriate choice for finding subsets for parallel computation. The scalability properties of the

current algorithms might also preclude use on networks large enough to exceed the approximate

Dunbar number that seems to bound the size of meaningful partitions.

There are several promising directions by which to measurably improve the performance of

the FOG algorithms. I did not explore their convergence properties as relates sample size, which

might be informative toward possible subsampling approaches for dealing with large datasets. One

direction for enhancement is parallelization, as each of the algorithms populate matrices full of

computations which could be performed asynchronously. Another is the mixing of hard and soft

clustering paradigms, and a final is the application of efficient queuing mechanisms within the

h-FOG and α-FOG-Residual algorithms.



Chapter 5

Path Prediction

5.1 Problem Definition

Many real world sensor networks are capable of simultaneously tracking many agents as they

navigate a space. Examples include network-linked GPS devices in phones and vehicles, passive

tracking mechanisms such as radar (when paired with technology to distinguish agent identities),

and entry-point systems such as keycard and RFID scanners. (Many additional examples emerge

when we consider agents navigating virtual spaces such as the World Wide Web, but this paper will

focus on a physical system). As the volume and complexity of data produced by these systems has

grown, human monitors are increasingly dependent on algorithms that efficiently extract relevant

patterns for their analysis.

One successful approach to pattern mining in this domain has been to presume the existence of

hidden variables which mediate the transitions observed by sensors. For example, there may be a

hidden activity that explains the time an agent spends at a certain location, or an underlying plan

that explains the choice to travel from one place to another. Probabilistic relationships between

hidden variables and observed variables can be encoded with graphical models such as Conditional

Random Fields (CRFs), which support efficient algorithms for inferring missing values. Previous

work have used this general approach to predict future agent actions and detect surprising deviations

from typical behavior [73]. Applications have been discussed in contexts ranging from robotic and

human planning [7] to assistance of seniors and disabled individuals [72].

Inference from this type of model is generally preceded by a training phase, in which model

parameters are optimized against a dataset for which “true” values of hidden variables have been

provided. In previous experiments, training data were drawn from journals of experiment partici-

91
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pants, hand-coded by human observers, or extracted from existing databases (e.g. maps of known

locations or obstacles). In this paper, we examine a case where such data would be useful but is

unavailable. Our dataset tracks the movement of 1700 merchant marine vessels servicing ports in

the English channel over a 5 day period. Maritime navigation is organized around “soft” conven-

tions, such as shipping lanes and known waypoints, rather than “hard” constraints, such as roads or

walls. Because some conventions differ between nationalities, companies, and ship types, as well as

changing over time, there is no single collation that could be encoded directly into our model. The

same diversity of backgrounds and conventions would make conducting a survey with reasonable

accuracy and breadth cost-prohibitive.

The maritime behavior modeling domain is one of many in which a graphical structure naturally

describes the process, but expecting the existence of training data is unrealistic. Others include

covert applications where subjects cannot be polled, large scale applications where surveys would

be expensive or inaccurate, and evolving environments in which training data quickly becomes

outdated. As a solution I describe in this section an unsupervised approach to graphical models,

allowing the user to exploit knowledge of the structure of hidden variables in a system without

observing them - even during training. I introduce 2 algorithms that concurrently assign variable

values and optimize model parameters in a way that is self-consistent given the model structure.

The model and algorithms are simpler than the most advanced supervised methods, but gives

compelling results on destination prediction task, and demonstrates a variety of challenges involved

in creating an unsupervised approach.

The rest of this chapter is organized as follows. In section 5.2 I describe the graphical model used

to relate observed AIS data and latent behavioral parameters. In section 5.3, I define unsupervised

learning for factor graphs and discuss its from the points of view of local search and expectation

maximization. In sections 5.3 and 5.3 I give two algorithms which conduct unsupervised learning

using different update schedules; their performance on a destination prediction task is compared

in section 5.4. Finally, in 5.5, I address the challenge of prioritizing iterative updates which will

have the greatest impact on model likelihood. I show that some unsupervised factors, including

those associated with clustering distributions, have parameterizations that allow for efficient REM

algorithms similar to α-FOG-Residual. Exploiting this structure leads to faster and more accurate

unsupervised inference on a simplified version of our factor graph.
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5.2 Factor Graphs for Path Prediction

The trend in previous work has been to provide increasingly complex graphical models to incorpo-

rate additional sensor data (e.g. use of street maps in [73]) or knowledge regarding relationship

structure (e.g. modeling of activity duration by [37]). In order to concentrate on unsupervised

learning, we employed the relatively simple, two-layer model shown in figure 5.1. The variables in
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Figure 5.1: Plan Prediction Factor Graph

our factor graph include the following.

• Each yt is an observed vector in R3 containing the latitude, longitude, and speed at time t.

• Each xst is a hidden, discrete state variable representing the instantaneous state of an agent. It

takes on integer values 0 ≤ xst < ns. These are intended to capture the notion of well-known

waypoints a captain might route between when charting a course.

• Each xpt is a hidden, discrete plan variable capturing an internal agent state persisting over

several time periods. It takes on integer values 0 ≤ xpt < np. This is intended to capture the

notion of a route which might affect the planning of several sequential waypoints.

The following factors model relationships in our graphs.
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• φS(xst ,yt) is a state compatibility factor which measures the likelihood of observation yt

being generated when within state xst . Since state variables are intended to capture the

idea of a fixed “place”, the likelihood function corresponds to a Gaussian distribution on

{latitude, longitude, speed} for each state. φS is implemented by maintaining mean and

covariance matrices for each of ns Gaussians. To avoid overfitting the Gaussians corresponding

to infrequently observed states, each one is initialized with a a mean prior drawn from a

uniform distribution over the range of latitudes, longitudes and speeds. The prior covariance

is the covariance matrix for the same uniform distribution.

• φT (xst , x
s
t+1, x

p
t ) is a state transition factor which measures the likelihood of transitioning

from xst to xst+1 when plan xpt is active. The plan state xpt can represent (for example) the

propensity of an agent to select a different route when targeting a different destination. This

factor is parameterized as a likelihood table for all possible transitions, and is initialized with

a uniform prior to ensure that a minimal probability remains for unobserved transitions.

• φP (xpt , x
p
t+1) is a plan transition factor which measures the likelihood of switching from xpt

to xpt+1. Whereas the state transition factors capture physical constraints (the need to move

between adjacent locations states) and tendencies in the context of the plan, the primary

purpose of the plan transition factor is to model how frequently agents are expected to change

longer term objectives. This factor has a single parameter, the change probability, which we

initialize to .2 to indicate an expected time scale of plans being maintained for approximately

5 hours (the average time-at-sea we observed in ships that went to port). Although this

parameter (and therefore the time-scale of a plan) can change during training, this initial

setting plays an important role in determining which maximal labeling we will reach.

The figure above depicts the variables associated with the path of a single vessel. If we observed

a single ship for an exceptionally long time, we might conceivably train a model using only this

trace, since it would generate many observations of the same states and transitions wherever there

was regular behavior. Since our data sample instead covers many ships over a small time, we must

instead smooth between ships by placing all such traces within a single factor graph. Although the

resulting graph has disconnected components (one for each ship), each component includes factors

sharing the same parameters. During unsupervised learning, these parameters act as a conduit for

information between paths, so that a single set of well traveled waypoints and routes is learned.
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5.3 Unsupervised Learning for Factor Graphs

During supervised learning, factor parameters are generally found maximizing the expectation of

some training set S = s within which both x and y are known.

(5.1) w∗(s) = argmax
w

P (S)

Maximum likelihood estimation (MLE) can then be performed by finding the assignment to

hidden variables X that has maximum likelihood under factor parameters w∗. 1

(5.2) x∗(w) = argmax
x

Pw∗(t) (X = x)

In the unsupervised case, no true values are provided, preventing sequential learning and infer-

ence. As an alternative goal, we seek to find an assignment satisfying the fixed point of (5.1) and

(6.7):

(5.3) x∗ = argmax
x

Pw∗(x∗)(X = x)

To compare the many possible solutions to (5.3), we introduce the self-consistency likelihood,

a scoring function favoring assignments which receive high probability under their own optimal

parameter values:

(5.4) L̄(x) = Pw∗(x)(X = x)

The global maximum of L̄ is the fixed point with maximum self-consistency. However, finding

it is challenging on several levels. First, the space of possible assignment vectors is far too large

(size n|X|) to enumerate or sample meaningfully. Second, evaluating L̄(x) is expensive: one must

first compute the parameter values w∗(x), and then the partition constant z for the corresponding

distribution.

1In most applications the training sets X and T may be different sizes or even “shapes” in terms of relations

between variables. However, if a generator is provided for instantiating the same factors on both sets, parameter

sharing allows us to reuse a single parameter vector.
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Algorithms for supervised inference on PGMs face the same challenges above, and most over-

come them using local search informed by the graphical structure. For example, the max-residual

belief propagation (MRBP) algorithm maintains a set of messages corresponding to graphical ties,

and incrementally update message values in a way that it is guaranteed to reduce a free energy

quantity. Unfortunately, these methods cannot be directly applied to maximize our target, L̄.

Whereas changing the value of a variable x in a graph with fixed factor parameters affects only

local likelihoods, it can potentially effect all factor instances used to calculate L̄. This is because

the change may affect the optimal parameter settings for all factors for which x participates in an

instance. An alternate way to describe this effect is that the distribution P̄ achieved by normalizing

L̄ no longer induces the independences given in (2.5) – the Markov blanket for x under P̄ includes

all variables with which it shares a factor, not an instance.

However, under certain circumstances these “long range effects” may be limited. Let wf∗(x) be

the optimal parameter assignments for a single factor under assignments x, and let x ← (x, c) be

an operator returning an updated assignment vector with variable x set to state c. Now consider

the condition

(5.5) ∀x,c lim
|I(f)|→∞

wf∗(x)− wf∗(x← (x, c)) = 0

In other words, as the number of instances of a factor grows, the incremental change to optimal

parameters caused by changing the value of a single variable approaches zero. Many common factor

parameterizations satisfy this condition, including those we use and list in section 5.2 (modulo the

assumption that we observe all Gaussians and state transitions a sufficient number of times). Under

this condition, the effect under P̄ that changing x has on local likelihoods outside N(x) becomes

negligible as our graph becomes larger.

Armed with this intuition, we define a local search with an operator δ : Z|X| → Z|X|, which

produces a sequence of assignment vectors following x(i) = δ(x(i−1)). If δ is such that

(5.6) Pw∗(x)(δ(x)) ≥ Pw∗(x)(x)

then its fixed point must satisfy (5.3) as well (assuming that it does not trivially self-cycle). In

the following subsections we introduce two operators that satisfy this condition, but have different

properties in terms of convergence rate and susceptibility to local maxima while maximizing L̄.

The δ-operator notation in this section has been adopted for compatibility with the notation

of [38] relating to asynchronous belief propagation schemes. However, we can also see that a valid
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δ-operator can be constructed by combining the update steps of any CEM algorithm (definition 11).

In section 5.5 I explore this further by introducing additional properties of a factor graph which

permit tractable application of a full REM algorithm.

Asynchronous EM

My first local search operator improves an assignment vector incrementally by setting one

variable at a time to the value with maximum expectation under the current state. The successor

is

δA(xt)i =

 i 6= j(t) : x
(t)
i

i 6= j(t) : argmaxxi Pw∗(xt)

(
xi | x(t)

−i

)
where xt is drawn from a round robin schedule established in advance. This operator is easy to

implement for our graph because our factors support incremental updates: changing the value of x

changes only factor instances I−1(x), and each of our factors can be readjusted to give maximum

expectation to a new instance assignment in constant time. When describing an iteration of the

algorithm we include one update for each variable, in order to standardize the unit of work by

graph size. Pseudocode for an implementation of δA can be found as Algorithm 11.

The initial assignments x0 are selected in the following way. First, a vector of random assign-

ments x′ is established. Then, each variable is set to its maximum likelihood value with neighbor

variables assigned according to x′ using the prior factor parameters. This “stacking” of the initial

state assures that initial factor parameters fully explore the range of possible values they can take

on. In testing, we found that making sure that initial parameters were distributed was essential to

avoiding bad local maxima. For example, maximizing initial factor parameters against a random

allocation vector tended to initialize all Gaussians in state factors to have means near the actual

mean coordinates for the data. This initial clustering resulted in poor exploration of the state

space, with most clusters remaining near the map center even after many iterations.

Synchronous EM

My second operator synchronously updates all variable values to a maximum likelihood estimate

under the current factor parameters:

(5.7) δS(xt) = argmax
x

Pw∗(x(t)) (x)

This is analogous to a standard EM algorithm, in which cluster assignments and cluster pa-

rameters are updated in an alternating fashion. We hypothesized that taking larger steps in the
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Algorithm 11 ASYNCHRONOUS

w0 ← Draws from prior

x0 ← Random allocation

t← 1

loop

w(t) ← w(t−1)

x(t) ← x(t−1)

for all x ∈ X do

x(t) ← (x(t) ← x, argmaxc Pw(t)

(
X = x(t) ← (x(t), c)

)
)

w(t) ← argmaxw Pw(X = x(t)) (local updates)

end for

t← t+ 1

end loop

Algorithm 12 SYNCHRONOUS

w0 ← Draws from prior

t← 0

loop

x(t) ← MLEw(x) (calls MLBP)

w(t+1) ← argmaxw Pw(X = x(t))

t← t+ 1

end loop
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space of assignment vectors might make us less susceptible to local minima. However, by changing

assignments to many variables at once, we may be less protected by the guarantee in (5.5).

Pseudocode for this method is listed as Algorithm 12. We initialize cluster parameters with

priors as we did for the asynchronous method, but it is unnecessary to initiate the first state as

we will be using maximum likelihood belief propagation, which depends only on observed variables

and factor parameters. Then, at each step, we conduct inference with the current factor parameters

using MLBP. Finally, we re-optimize factor parameters to the new assignment.

5.4 Plan Projection Experiment

5.4.1 Method

We designed an experiment to simulate our system’s performance at a fundamental task: using the

estimated plan of an agent at sea to predict where it will next make port. Our experiment proceeds

in two phases. First, we perform unsupervised learning on a test set representing sequences that

would have occurred prior to some test sequences, as well as on the first potion of the test sequences

themselves. Then, using the labels and factor parameters assigned during the first phase, we sample

a distribution of future states for the test set, in order to estimate its next stop.

To create a dataset of sequences appropriate to this task, we developed the following test.

First, we included only observations from ships with five consecutive observations “in motion”

(reported velocity over 1 km / h) to eliminate a large percentage of ships that did not move often

enough to assist training of transition probabilities. Since our model does not explicitly address

the duration between observations, we standardized this quantity by eliminating sequences whose

inter-observational interval was outlying (over 3 hours). A total of 13715 individual observations fell

into sequences in this category. Then, for the test set, we isolated the 457 subsequences within the

test set that consisted of routes beginning in motion and ending stopped, with at least 5 segments

in between. The criterion on test sequence length is the only one of these filter that could not be

applied without full knowledge of the test set, but was necessary to ensure that each test sequence

A) was long enough for us to instantiate a factor graph with all factors on, and B) had a buffer

beyond this so that we would be forced to predict multiple state transitions.

To calculate a maximum likelihood estimate for the next portfall of a particular test ship, we

appended 100 additional hidden plans and states (along with associated factors) to the section of

the ship’s factor graph which was optimized during training. We then ran Gibbs a sampler on

these hidden states using the factor parameters learned during training. Every 1000 iterations we
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would extract a prediction from the sampler by recording the mean position of the first state whose

expected velocity was under 1 km / h.

5.4.2 Results and Analysis

Visual inspection of the locations and transition probabilities learned by our algorithm confirms

that it produces a coarse but credible summary of traffic flow in the channel. Figure 5.2 shows

probable transitions within one plan, trained with our asynchronous algorithm and visualized using

Google Earth. Vertexes are placed at the Gaussian mean for each state, with edges placed between

transitions with high probability. Transition edges do not necessarily indicate a path (for example,

many extend over land), but simply a start and end point. These transition could potentially

be post-processed with known land locations to produce more realistic paths. It is also worth

noting that no single ship likely visited all of the paths on the plan. Because the plan only

affects transitions conditioned on the starting location, there is no penalty for a single plan being

“overloaded” with paths from dissociated end points. For interpretable plans associated with a

single start and endpoint, we might need to add an additional factor favoring a sparse adjacency

relation between plans and state variables.

Figure 5.2: Probable locations and transitions associated one learned plan.

To measure accuracy on our portfall prediction task, we computed the surface distance between

the predicted destination and the actual portfall associated with each prediction and plotted the
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inverse cumulative density for this figure as Figure 5.3. The curve summarizes a set of probably

approximately correct (PAC) bounds for the estimator. For example, models trained with the

asynchronous algorithm achieved accuracy under 100km 71% of the time. Synchronous models had

only a 53% chance of acheiving this accuracy.

Figure 5.3: Inverse cumulative density function for error

Another important factor in algorithm choice for probabilistic graphical models is time to

convergence. We measured this by counting the number of variables updated in each iteration

of the algorithm. To minimize the impact of random starting configuration, we ran 5 trials to 20

iterations with each algorithm, producing the mean updates and error bars shown in figure 5.4.

Overall, the predictions made by the model were well short of the accuracy needed for most real

world applications of this system. For example, if the goal was to meet the ship upon portfall, then

in many parts of the English channel there would be several potential ports within the 100km radius

mentioned above. However, the results do show that asynchronous updates dominate synchronous



102 CHAPTER 5. PATH PREDICTION

Figure 5.4: Convergence rates for the two learning algorithms

updates in terms of both probable approximate correctness and convergence rate. We were surprised

to find that after only 4 cycles of updates the asynchronous algorithm reached a fixed point in most

cases. In contrast, the synchronous algorithm seemed prone to cycles in which each iteration toggled

significant number of predictions even after 20 iterations.

5.5 Residual Expectation Maximizing Belief Propagation (REM-

BP)

Having established that even an arbitrary asynchronous update schedule can result in faster and

more accurate unsupervised learning in factor graphs, I now consider whether additional perfor-

mance can be achieved by prioritizing updates which will have a large impact on the consistency

of the model.

5.5.1 Multi-clustering factors and factor graphs

To apply the same principle to factor graphs, I adapt the definition of a latent clustering distribution

to apply to factors. Since some factors, such as the state transition factor in our AIS graph, involve

more than one unobserved variable, our “cluster parameters” must relate to a configuration of such

variables rather than a single value. To discuss this, I introduce a configuration function

ζ : {1 . . . k}l → 1 . . . kl,
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which associates a categorical label with each configuration of the unobserved domain of a multi-

clustering factor. As with the representation illustrated in figure 2.2, I initially presume a single

configuration function with associated k and l; in practice there would be a distinct function for each

class of factors that is repeatedly instanced in a graph. The following definition gives conditions on

the way factors are parameterized which will make computations introduced later more tractable.

Definition 14 A factor φ(x,y; w) : ZZk, IR∗; IRl → IR+, is a multi-clustering factor (MCF) if it

can be rewritten as φ(ζ(x),y; wζ(x)), where wζ(x) is a distinct (non-overlapping) set of parameters

associated with configuration ζ(x).

We may also define an infinite multi-clustering factor analogous to definition 13 for cases in

which one or more of the configuration dimensions (and therefore the configuration space itself) can

take a potentially infinite number of valuables. To do so, we impose an exchangeability requirement

that any permutation of the labels on unobserved variables, and any permutation on the the labeling

imposed by the configuration function, give the same likelihood so long as the parameter matrix

is identically permuted. In other words, the label itself cannot be part of the likelihood function.

This ensures that the maximum likelihood estimate for parameters of all configurations which have

not been observed will be identical, allowing us to address them with a single computation in later

algorithms. I reserve 0 as a placeholder index for as-yet unobserved variables and configurations,

so that ∃i | xi = 0→ ζ(x) = 0, and the likelihood of a novel configuration is always φ(0 | y).

A single (infinite) multi-clustering factor is essentially an (infinite) latent cluster likelihood for

a configuration space, but they can be joined in a graph to represent co-clustering problems with

a wide range of independence structures. The structure captured by multi-clustering factors is

not addressed by normal factor graphs because it factors the distribution according to subsets of

unobserved values, rather than by subsets of variables. To represent this, I define an augmented

factor graph where configurations of factor domains intermediate the parameters used in calculating

potentials.

Definition 15 An multi-clustering factor graph (MCFG) for n unobserved variables assuming k

distinct values, with m factors, each of which relating at most d unobserved variables which can par-

ticipate in up to d distinct factors, d observed variables, and d factor parameters per configuration,

consists of a tuple,

MCFG : 〈Φ,M,Y〉

where



104 CHAPTER 5. PATH PREDICTION

• Φ ∈ {ZZk, IRd; IRd → IR+}m is the factor list consisting of (infinite) multi-clustering factors.

• M ∈ {0 . . . d}m×n is the configuration matrix, where mij indicates the participation (if

nonzero) and position of unobserved variable j within the configuration associated with factor

potential φi. Each row and column contains at most d nonzero entries.

• Y ∈ IRm×d is the observed matrix containing d observed variables associated with each factor

instance. In practice observed variables may be used in more than one factor; for simplified

notation they would be indexed redundantly in this matrix.

Definition 16 A multi-clustering inference state associated with an MCFG structure as above is

a tuple

MCIS : 〈x, c,W〉

consiting of,

• x ∈ {1 . . . k}n is the assignment state designating current cluster memberships for each vari-

able.

• c ∈ {1 . . . kd}m = ζ(x) is the configuration state enumerating the configuration of variables

associated with each factor.

• W ∈ IRk
d×d is the parameter state containing d parameters for each possible factor domain

configuration.

Figure 5.5 provides a visual representation of the graph and inference state of an MCFG. Note

that, as in section 2.3.4, I have assumed for simplicity uniform variable domains sized k and factor

domains (observed, unobserved and parameter) sized d. In real applications we can partition each

of the matrices and vectors above to allow several types of variables and factors. Additionally, k

may be infinite in theory, and vary in practice during inference, as in iREM (algorithm 9). I address

representation of W in the following section.

5.5.2 Inference

The generalized REM algorithm (9) relies on the property of clustering distributions that the

parameters associated with one cluster affect only the likelihood of belonging to that cluster. As a

result, it is possible to maintain a priority queue of the most important updates by updating only

the likelihoods associated with transitions to the previous and new cluster assignment. In factor
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Figure 5.5: Schematic of a multi-clustering factor graph with associated inference state.

graphs, the situation is complicated by the fact that each variable can participate in more than

one factor distribution, and that the factor parameters themselves can relate multiple unobserved

variables. However, the basic principle that an update requires only sparse recomputation of other

queued updates can still apply when the conditions we placed on multi-clustering factors hold.

The Residual Expectation Maximization Belief Propagation (REM-BP) algorithm for multi-

clustering factor graphs works, similarly to REM, by maintaining a list of priority queues S that

help determine the best assignment for each variable, as well as a cross-variable residual queue r

that speeds determination of the most beneficial update available. At each iteration, the update

providing the maximum improvement is executed, factor parameters are updated to maximize the

likelihood of the new assignments, and queues must be updated to permit selection of the following

update. During this process, it is possible to exploit graph and factor structures by performing

updates in the following phases.

• Parameter Phase. Due to factor structure, the only parameters which must be updated are

those associated with the former configuration and new configuration for each factor with the

reassigned variable in its domain.



106 CHAPTER 5. PATH PREDICTION

• Graphical Phase. Due to graphical structure, only those score queues associated with variables

in the same factor domains as the updated variable must be updated in their entirety.

• Configuration Phase. Due to parameter updates, it is necessary to also update each entry in

S associated with an assignment that would lead to either the original or new configurations

in which the updated variable participates.

In the pathological scenario where a variable participates in every factor in the graph, the

updates above could involve a recomputation of all assignment likelihoods. However, when the

degree of each variable is bounded, and especially if the configurations are varied, it is possible to

maintain S with very few updates.

To enumerate the variable updates itemized above, I define some helper functions that explore

graph and configuration structure. Let the set-valued neighbor function

N(M, i) = SORTED({j : Mij 6= 0})

return the indices of columns in which a matrix has nonzero entries in ascending order by value.

In most sparse matrix representations, and particularly in graphs with regular generators, N can

be iterated through very efficiently.

Next, let the substitution function

B(c, i, x) = ζ(ζ−1(c)<i, x, ζ
−1(c)>i)

return the index of the configuration acheived by substituting x as the value for the i’th variable

in configuration c. Finally, let the integeradjacency function be defined:

A(c, i) = {c′ : ∃x ∈ {1 . . . k} | B(c′, i, x) = c}

In other words, given a configuration and a position index, return all configurations reachable by

substitution of a single variable value.

This notation is used in the pseudocode for the REM-BP algorithm (13), given below, with

implementation discussed following.
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Algorithm 13 Residual Expectation Maximization Belief Propagation (REM-BP)

Require: Φ,M,Y {Multi-clustering factor graph}
Ensure: x, c,W {locally maximal multi-clustering inference state}
k ← 0 {number of inferred clusters}
x← {0}n,W← {0}∞×d, c← {0}m

l← {0}n {current variable likelihoods}
S, r← ∅ {keyed priority queues for scores and residuals}
ε← minj

∏
i∈N(Mt,j) φi(0 | yj) {minimum initial assignment likelihood}

for i = 1 to n do

li ← ε

UPDATE(i, 0) {queue assignment to novel value}
end for

repeat

i← POP (r) {draw variable with greatest update priority}
v ← xj , v

′ ← PEEK(Sj) {get old and new values}
if v′ = 0 then

k ← k + 1, v′ ← k {create a novel value}
end if

if v 6= v′ then

xi ← v′

u← ∅ {set of variable, assignment pairs needing likelihood recomputation}
for j ∈ N(Mt, i) do

p← cj , p
′ ← B(cj ,Mji, v

′), cj ← p′ {parameter updates}
wp ← argmaxw

∏
j′:cj=p

φj′(p | yj′ ,w),wp′ ← argmaxw

∏
j′:cj=p′

φj′(p
′ | yj′ ,w)

u← u ∪ {∀v′′∈{1...k},i′∈N(M,j)(i
′, v′′)} {graphical updates needed}

u ← u ∪ {∀p′′∈{p,p′},b∈{1...d},c∈A(p′′,c),j′:cj′=p
′′(N(M, j′)b, ζ

−1(p′′)b)} {configuration updates

needed}
end for

for (i′, v) ∈ u do

UPDATE(i′, v) {recompute likelihood of assignment to v}
end for

end if

until | r |= 0
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Algorithm 14 UPDATE Subroutine

Require: i, v {variable and value to update}
l̂←

∏
j∈N(Mt,i) φj(v | yj,wv)

INSERT (si, v, l̂) {update likelihood of assignment}
INSERT (r, i, PEEK(si)

li
) {update priority of assignment to most likely value}

Many of the implementation details for REM-BP are similar to those for the original iREM

algorithm (e.g. the use of keyed heap structures). The multi-level iteration required to enumerate

configuration-based updates can be assisted by maintaining a hash from configuration indices to

factor indices whose domains are so configured. If factor parameters admit incremental updates (as,

for example, exponential family likelihoods do), parameters can be optimized without considering

observed variables other than those associated with the factor instance being updated. Variable

likelihood updates could be performed with fewer evaluations of potential functions by memoizing

factor potentials and only updating those whose configurations or parameters changed in this round.

It also improves numerical stability and speed to perform likelihood products in logspace.

5.5.3 Empirical performance of REM-BP

To compare REM-BP to asynchronous EMBP with an arbitrary schedule, I considered a simplified

map building task, in which the goal was to compute a set of locations and transition probabilities

between them rather than infer longer range paths. Figure 5.6 illustrates the associated graph,

which is essentially a subset of the path prediction graph used in the previous set of experiments.

The observed variables y and hidden variables x represent location data and latent location

centroids, as in the previous section, with the exception that the observed ship location yt is

comprised of only its latitude and longitude. We define the factors as infinite multi-clustering

factors as follows.

• φS(x,y; wx), gives the likelihood of the latitude, longitude pair y being emitted by the cen-

troid associated with xt, whose latitude and longitude are the configuration-associated pa-

rameters wx. The formula for this factor potential is the Gaussian

φS =
1√

2πσ2
e
D(y,wx)

2

2σ2 ,

where σ is a meta parameter input to the algorithm indicating scale, and D is the distance

between coordinates in a planar projection tangent to the centroid.
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Figure 5.6: REM-BP Experiment Factor Graph

Using a planar projection is highly accurate for short distances, allows the centroid position

to be optimized by simple averaging, and allows distance computations to use only a single

trigonometric calculation. Using a constant scale on the distances, rather than a centroid

specific one, permits a more regular spacing of centroids which creates a more regular tran-

sition matrix. The potential associated with a novel cluster is always 1√
2πσ2

, the probability

when a centroid exactly matches a data point. One way to interperet this is to imagine that

every possible centroid exists, but there is no need to consider those that are neither optimal

for a data point nor associated with other data points.

• φT (x, x′;wζ(x,x′)), gives the likelihood of a transition from x to x′. A single parameter is asso-

ciated with each (x, x′) configuration, equalling the number of such configurations currently

observed in the data. The likelihood returned is the Dirichelet likelihood

φT =
1 + α+ wζ(x,x′)

1 + α+ n
,

where α is a meta-parameter indicating the expected sparseness of the transition matrix,

which indirectly enforces the sparseness of the state space as well.

Instantiating the above factor graph for the AIS data set, I trained factor parameters using

the REMBP algorithm, and using the round robin expectation maximization algorithm from the
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previous section. Figure 5.7 compares the convergence profile in terms of wall-clock time respec-

tively by graphing the cumulative in log-likelihood achieved on sampled iterations of the algorithm.

REM-BP far exceeds a round-robin schedule in quickly coming close, in terms of overall likelihood,

to its final configuration. The initial rapid increase in likelihood in the round-robin schedule is due

to initial assignments being cataloged for each variable. Visual inspection of the learned transition

graphs figures 5.8, shows that the solution reached by REM-BP also appears much richer than that

reached previously by the round-robin schedule (depicted in the previous section).
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Figure 5.7: Convergence profiles for REM-BP and round robin algorithms.

5.6 Discussion and Future Work

I first presented synchronous and asynchronous expectation maximization algorithms for unsuper-

vised learning in factor graphs. I used these algorithms with a factor graph interpreting AIS data

in order to simultaneously detect a map, hidden plans, and transition frequencies between plans.
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Figure 5.8: REM-BP learned model

To my knowledge, this was the first work applying general purpose unsupervised algorithms in

graphical models to conduct learning with real data. I used the learned models to make projec-

tions of portfalls for ships in motion. Although these preliminary results were not accurate enough

for real-world application, both prediction accuracy and direct inspection of learned locations and

transition probabilities suggested that a reasonable model was being inferred. The more signifi-

cant result is that the asynchronous method significantly outperformed our synchronous method in

terms of both convergence rate and probability of achieving high accuracy in portfall prediction.

By animating the algorithmic iterations within Google Earth, I was able to see that that,

consistently, some regions of the map stabilized quickly in terms of cluster locations and transition

probabilities while others were left to slowly improve over many iterations. As a result, the pre-

computed schedule for variable updates caused significant computation. In the α-FOG experiments

of the previous chapter, and in previous work on supervised PGMs by Elidan et. al [38], it has

been shown that algorithms which prioritize updates that strongly improve the model converge

faster and often to better local maxima. To translate this concept into unsupervised inference for

factor graphs, I proposed a subclass of multi-clustering factor graphs with additional restrictions

on factors. The additional restrictions permit efficient implementation of a residual prioritizing
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algorithm, REM-BP. Experiments on a simplified graph for AIS data confirmed the hypothesis

that a residual-prioritized schedule would significantly improve performance, and even made it

possible to conduct learning in a graph with a large and initially undetermined number of latent

categories.

I foresee two major challenges in improving performance on the AIS graph. The first is the need

to provide greater precision in modeling of traffic patterns in more populated areas. For example,

accurately predicting behavior of ships may require associating them with paths and waypoints

with effective diameters of a few kilometers, while 10 or even 100km resolution may be sufficient to

identify the trajectory of those in the open sea. One way to accomplish this would be via multi-scale

models, in which locations and trajectories were organized into a hierarchy of locations. Olson et

al. [98] has begun exploring a version of this problem in which waypoints and arcs identified at a

high spatial resolution must be summarized at a lower one. In practice, it may be more scalable to

attempt the problem in reverse, as with the progressive precision created as a spatial kd-tree [99]

is populated.

Solving the variable-granularity problem might actually exacerbate the second challenge, which

is scalability. Experiments conducted with an unknown number of waypoints quickly generated an

intractable quantity when high resolutions were used. One major reason for this is the poor fit

between a Gaussian surface centroid and the abstract navigational coordinates of a ship. On long

shipping lane stretches, our algorithm detected a series of discrete states, rather than the single

transition between one waypoint and a distant one which was probably determined by the human

process we are trying to model. In addition to requiring unnecessary computation, this complicates

the prediction task and most likely degrades performance. Identifying the long-distance transition

made by ships going all the way through the channel as a single decision would allow us to recognize

it as quite distinct from the path taken by a ferry going from one side to the other, though they

may both cross the same point.

Although it is not reported in this chapter, I attempted to solve this problem by adapting the

filament-based method of [43] to the the MCFG framework. The challenge I proved unable to

solve was how to sensibly initialize the filament network within my unsupervised context. Gordon

et al. identified this as a difficulty within their domain as well, and reported experiments based

on a hand-drawn initialization of this graph. A model of this kind would work well hand-in hand

with future work incorporating an inflow of data over time, coupled with human input to aide the

comprehension process.

Ultimately, unsupervised algorithms and future improvements have the potential to support a

variety of applications where labeled data is unavailable, but they do not replace the need for a
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priori reasoning. The structure of the model, determined in advance, encodes beliefs that constrain

the learning problem, opening the door to incorporate expert knowledge but also to erroneous

assumptions. Proper model selection in this context may take on a special importance, indicating

another line future research.



114 CHAPTER 5. PATH PREDICTION



Chapter 6

Spatially embedded link prediction

6.1 Problem Definition

Describing and predicting change in networks over time has been an active topic within the social

network analysis community since [92]. Doing so in the context of multi-mode and attributed data

are the primary goals of the dynamic network analysis [22] and SIENA modeling frameworks [108].

Link prediction refers to a specific task within this topic: given prior snapshots of a network relation

and an observed set of nodes at a subsequent timeframe, can we predict which new links have been

created in the interval?

In this section, I approach this link prediction task informed by a spatial embedding for a

network. When Stanley Milgram set strangers searching for each other in his 1967 small world ex-

periment [84], he armed them with only two pieces of information regarding the name they sought:

its city of residence and profession. His design presumed, and results affirmed, that spatial and

community cues were sufficient to guide information through a social network, in spite of the expo-

nential variety of structures which the network could theoretically take. Since then, studies have

confirmed that spatial models usefully predict network relations, not only for searching individuals

in a static social network [60], but for observers predicting missing or nascent links in a sampled or

dynamic network [20] [25].

As described in section 2.1, a natural explanation for the spatial and community structure of

our interpersonal ties is that they reflect our limitations as individuals. Distance complicates our

interactions, so we either move near those we work with and care about, or learn to work with

and care about those who are near. A broad class of inverse-distance models have been proposed

operationalizing this insight [20].

115
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One drawback of inverse-distance models is that they are sensitive to the choice of distance

function, which is not always clear even when a clear spatial context exists. Should we sooner

expect a New York City resident to have a business partner in Los Angeles or in Cincinatti? One

could digress over whether spatial, demographic, or jet-travel time distances are better predictors

for this relation, but doing so would ignore that each of these measures can be approximated from

the geographic locales we referred to by city name. Spatial clustering models utilize this insight by

pre-processing data for clusters based on some embedding distance, then deriving cluster-cluster

link probabilities that approximate the most appropriate distance measure [98]. This method

is less sensitive to the embedding distance, but requires that nodes fall into spatially separable,

homogeneous clusters. We might not, for example, be able to distinguish one borough of New York

from another, with the different linkage likelihoods that doing so might incur.

To extract value from spatial data in spite of the challenges above, I define a nonparametric

spatial correlation approach which revolves around the self referential definition, “nodes nearby

each other tend to link with other nodes that are nearby each other”. Spatial correlation gener-

alizes inverse distance and spatial clustering models, and so can be considered without knowing a

priori whether one of the more specific models might apply. To reduce dependence on the spatial

distribution of nodes, I propose a nonparametric framework which adapts to overlapping popula-

tions with varying densities. Since the algorithms involved in inferring link probability scale poorly

with increased data, we provide an estimation algorithm which can be tailored to the data size and

computational power available.

Spatial correlation can be generalized to non-geospatial aspects of network data, including

continuous embeddings in any dimension and “spaces” described by categorical variables. To

validate the approach I examine an evolving network of supply chain relations between publicly

traded U.S. companies (described in section 3.2). The company nodes have several rich spatial

attributes, including geospatial coordinates of headquarters, the one dimensional space of market

capitalizations, and the categorical space of sector relations. I show that inverse distance and spatial

clustering models do not fit the dataset, potentially due to the distributed nature of the entities or

the potential for complementarity of assets across distant / different firms. I then test the predictive

capability of our nonparametric spatial correlation algorithms by conducting experiments in link

prediction and missing link detection following [74] and [85].
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6.2 Classifying spatial embedding models

Network models have been proposed in many forms, from distributions over summary statis-

tics [9] [116] to generative algorithms and simulations [69] [88] [108]. In this paper we focus on

models that, for a set of n nodes, can be expressed as a distribution P (M) over n×n binary matri-

ces M for which each entry mij indicates the presence or absence of a directed link from node i to

node j. As prior work on exponential random graph (ERG) models have demonstrated [103] [107],

adopting a probabilistic framework allows a single model to be conveniently applied to a variety of

tasks, including missing data detection and link prediction.

Since the number of possible realizations of M grows exponentially with the number of nodes,

models must make simplifying assumptions to keep training and inference tractable. Attribute-

mediated models accomplish this by introducing a secondary n×m matrix X containing attribute

data. If we assume (or accept the approximation) that each edge is independent of all others given

the row-vector attributes of the source and target nodes, we can derive P (M) by modeling the

simpler attribute-dependent distribution.

∀i,j,k,l mij ⊥ mkl | xi,xj → P (M|X) =
∏
i,j

P (mij |xi,xj)

The spatial models I consider are a subclass of attribute-based models, in which certain at-

tributes are node coordinates in some space in which the network is embedded. Typically these

would be geospatial coordinates such as a latitude / longitude pair, but I also consider more ab-

stract spaces, such as demographic distance or group co-membership. The defining characteristic

of an embedding space is its distance function D(xi,xj). So long as D adheres to the triangle

inequality1, we can define models that exploit spatial concepts such as density and convexity to

simplify link prediction.

Geospatial models for interpersonal social networks are attractive because there exists a con-

vincing web of justifications for their use. First, there is the process argument: most kinds of

relationship are more easily maintained at close distance, so bounded rationality will lead them to

be developed preferentially. Second, there is the pervasive phenomenon of homophily. The similar

perspectives induced by sharing an environment may make closeby relationships more attractive in

addition to being simpler. Finally, space is often highly correlated with, and so can act as a proxy

for, other kinds of node attributes for which the above arguments (or others) may apply.

The phenomena above are causally agnostic (we can interpret space as either cause or effect),

and can perpetuate each other via positive feedback. For example, groups of nodes that form ties

1 ∀i,j,k D(xi,xj) ≤ D(xi,xk) +D(xk,xj)
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due to some form of demographic homophily may move nearby each other to decrease maintenance

costs of those relations, leading to further similarity and greater homophily in the future. Geospatial

information is particularly convenient given that it can be easily and cleanly operationalized in many

environments, but it may not always be the space for which the above arguments best apply. I show

this is the case for our interfirm network, in which a better model is produced by an embedding

based on non-physical attributes.

Having adopted homophily as a motivation, I consider only spatial models that are distance-

negative: nodes at greater distance are less likely to connect, less similar in linking behavior, et

cetera. This bias is rooted deeply in the models and algorithms compared here, which can be seen

by considering an inverse distance (D′ = 1
D or D′ = −D) as as an approach at creating a distance-

positive model. The inverted function must break the triangle inequality on which my model

implicitly relies. Similar assumptions of link transitivity are built into many relational network

models, though they are not always explicitly discussed.

Table 6.1 illustrates archtypical networks predicted by three increasingly general classes of

spatial model: inverse distance, spatial clustering, and spatial correlation. The remainder of this

section introduces the three categories and discusses previous work on the first inverse distance and

spatial models. In section 6.3 I give a concrete instantiation of the sptatial correlation class.

Inverse distance models operationalize the stylized fact, “nodes at greater distance are less

likely to connect”. When applicable, this deceptively simple intuition is sufficient to make spatial

information an incredibly potent description of the network. [21] shows that even in a near trivial

model, in which link probability falls off abruptly at some critical distance, entropy of the distribu-

tion P (M) is drastically reduced when conditioned on the spatial data X. Similarly, [60] showed

that when agent nodes with only local knowledge of graph structure are linked on a spatial lattice

with few “long” links, spatial information about a target recipient is sufficient to permit routing of

information along a near-optimal path.

The example equation given in table 6.1 is a slightly more practical model, which can be fit

to data. Link likelihood decreases exponentially with distance at a rate determined by the single

parameter λ, which can be trained using maximum likelihood estimation. A trained inverse distance

model turned out to be capture the majority of relational information in a prediction similarity

score computed in [28].

[20] explored the predictive power of a variety of inverse distance models on both real and simu-

lated data, and in doing so identified the following consideration when selecting distance functions.

Inverse distance models are not robust to factors which might distort the effect of distance in various

scales and locales. For example, from the point of view of many social processes, London and New
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Category L(mij |xi,xj) 2d Example 1d Example

Inverse Distance e
−D(xi,xj)

λ

Spatial Cluster

∑
k∈C(xi)

∑
l∈C(xj)

mkl

|C(xi)||C(xj)|

Spatial Correla-

tion

∑
k,l 6=i,jK(D(xi,xk)

λ ,
D(xj,xl)

λ ) mkl∑
k,l 6=i,jK(D(xi,xk)

λ ,
D(xj,xl)

λ )

Table 6.1: Typical likelihood functions and graphs of spatial network model categories.
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York are significantly “closer” to each other than either are to the islands that lie between them on

the flight route. This phenomenon is demonstrated in figure 6.1, which estimates the distribution

of distances between linked companies’ headquarters in our interfirm network.

Figure 6.1: Kernel estimation of density of distances between linked companies in the Revere dataset

(n = 112985, bandwidth = 122.1 km). The various maxima correspond to distances between major

cities, demonstrating how social context can convolute the generally accurate notion that more

distant links are less probable.

There are several interesting ways to interpret the distance-conditioned density function shown

by the figure. On one hand, it demonstrates clearly that no monotonic function of distance cap-

tures the density relation visible in the data. While there is clearly a distance correlated effect, it is

clearly confounded with a coastal or clustering effect, with the distances between major metropoli-

tan centers causing clear peaks on the graph. However, it would be no solution to adopt the

nonparametric density function (or any parametric representation thereof) for generalized predic-

tion, as we cannot sanely believe that a 4000km separation would dramatically increase the link

probability for two companies not located in New York and Los Angeles. Instead, the graph shows

us that distance functions alone do not capture the spatial effects in our data, and that efforts to
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regress a distance-based function alone would be highly biased by the unmodeled effects.

With domain knowledge and experimentation it may be possible to select a distance function

well-suited to a specific network. However, if an appropriate function is not known a priori or is

difficult to compute, the utility of inverse distance models can be compromised. In general, if the

distribution of dyad density over distance seems non-monotonic, inverse distance is inappropriate.

As a rule of thumb, if there is evidence that PDF of link distance is multimodal, either spatial

clustering models or spatial correlation models as defined below may be a more appropriate fit.

Spatial clustering models introduce a pre-processing clustering step, represented by the C func-

tion in the sample equation in table 6.1, which mediates between the distance function and link

probabilities. Cluster assignments can be thought of latent group attribute which influences both

the link matrix M and spatial distribution of nodes X. As a result, the assumption that “nearby”

nodes have similar linking behavior need only be true as far as cluster boundaries extend. This

allows the model to adapt to more complex spatial behavior or a distorted distance function, for

example correctly encoding the New York - Los Angeles relationship pattern described above.

Spatial clustering is a challenging problem with its own literature outside our framing purpose of

predicting network structure. Some clustering methodologies are described in sections 2.2 and 4.1.

Among the challenges involved is determining a tradeoff between cluster size and cluster cohesion.

If cluster cohesion is maximized, clusters will be too small to be useful as a summary of the

underlying spatial data. At the other extreme, including overly distant points in the same cluster

diminishes the validity of that cluster as a summary. [98] proposed a framework for selecting an

optimized tradeoff between these extremes in the context of spatially embedded networks, using

entropy-reduction criteria from information theory.

Regardless of the clustering method and parameters selected, results depend heavily on X having

a distribution that is well represented by the cluster model under the distance function selected.

Nodes that are on boundaries between clusters may have the wrong information applied when

predicting adjacencies. If two highly predictive clusters overlap to the point of being merged, the

resulting cluster may have reduced utility in predicting node behavior. Finally, if the distribution

of nodes is more uniform than clustered in some regions, cluster boundaries may become extremely

arbitrary (in these areas an inverse distance model might be much more appropriate).

Figure 6.2 illustrates how these problems might arise in our interfirm network data. The dis-

parity in density of company headquarters between the northeast and the rest of the country is so

great that it may be difficult for an algorithm to find clusters with similar interpretations across

the region. Additionally, there exist a large number of “isolated” headquarters which would be

grouped by various clustering algorithms.
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Figure 6.2: Locations and significant supply chain relations between public company headquarters

in the Eastern United States.

Spatial correlation is my term for a new class of model that integrates the continuity of inverse

distance models with the flexibility of clustering models. Rather than individual nodes and their

properties being the unit of analysis, I assume that each dyad is similar to other nearby dyads in

likelihood of a link observed. ‘Nearby” in the preceding sentence must be operationalized for pairs

of dyads; I propose one such instantiation in section 6.3 and explore it experimentally in section 6.4.

Table 6.1 shows two networks whose properties motivate the spatial correlation model. In

the two-dimensional example we show a network where link behavior transitions smoothly as the

location of source or target nodes moves, consistent with spatially overlapping or mixed membership

node classes. In this network, distance alone is a poor predictor of link probability, and a clustering

model would capture only a portion of the predictive power of spatial positioning. In the one-

dimensional example, we show that even on a single axis, different spatial regions might be better

captured by distance based or cluster based models. Because spatial correlation generalizes both

model types and is adaptive by region, it can be applied across the entire space without knowing

in advance which model class is preferable.

Spatial correlation joins previous relational models targeting increased expressiveness. [35],

[31] and [6] are examples of efforts to accomplish this in the group detection domain, and [111]

introduces a general framework for conducting inference of attributes and relations in a wide variety

of structured data. More recently, nonparametric methods have emerged as a way of reducing

requirements for a priori knowledge. One example related to the approach found in this paper is
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that of [85], which attempts to identify a hidden set of features which underly node attributes and

predict link behavior. The method could be compared to identifying an optimized distance function

for a space of categorical attributes, and may make a powerful complement for the continuous-space

focused approach in this paper.

Nonparametric methods offer an alternative to practitioners that, during and exploratory anal-

ysis, might be expected to mis-specify a parametric model, or adopt one with unwanted bias. They

also provide a practical solution for scenarios where analysis where the proper parameterization is

not known in advance, and there will be no opportunity to determine one. The cost of this is a

much higher data (and thus computational) requirement, as we must algorithmically determine the

entire shapes of functions rather than a few control parameters.

6.3 A kernel-based spatial correlation model

One way to describe a spatially correlated relation is to say that, as the locations of source and

target nodes in one dyad approach those of another, the probabilities of observing a link on each

dyad converge.

(6.1) ∀i,j,k,l lim
D(xi,xk)→0

lim
D(xj,xl)→0

P (mij) = P (mkl)

What distinguishes one model from another is the way in which the above convergence occurs.

I begin with the Bayesian approach that link probabilities in both training and test data are

themselves random variables whose prior expectation is the overall density of the training graph

mij ,m
′
ij ∼ Bernoulli(pij)

pij ∼ Beta

( ∑
k,lm

′
kl

n ∗ (n− 1)
, 1

)

To describe the approach to the convergence given in equation 6.1, I adapt the concept of a

kernel function from nonparametric density estimation techniques. A dyadic spatial kernel function

K : R2 → R gives the mutual of information of linkage probabilities on two dyads as a function

of the spatial distances between the corresponding source and target nodes from each pair. A

bandwidth parameter λ is used to adjust the scale at which the kernel operates.

(6.2) I(pij ; pkl) = K

(
D(xi,xk)

λ
,
D(xj,xl)

λ

)
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The methods in this paper require the following kernel properties, which simplify inference of pij

and estimation of the bandwidth λ.

• Montonicity: K(0, 0) = 1, K(∞,∞) = 0, δ
δd1
K(d1, d2) < 0, δ

δd2
K(d1, d2) < 0

• Symmetry: K(d1, d2) = K(d2, d1)

• Differentiability: δ
δλK(D(xi,xk)

λ ,
D(xj,xl)

λ ) has a closed, readily computable form.

I compare three kernel functions fitting these criteria. Under the Gaussian dyadic kernel, mutual

information of link probabilities is inversely proportional to the sum of squared distances between

source nodes and target nodes in the two dyads.

(6.3) KG

(
D(xi,xk)

λ
,
D(xj,xl)

λ

)
= exp−

(
D(xi,xk)2 +D(xi,xl)

2

2λ2

)

(6.4)
δ

δλ
KG =

(
D(xi,xk)2 +D(xi,xl)

2

λ3

)
exp−

(
D(xi,xk)2 +D(xi,xl)

2

2λ2

)
Under the exponential dyadic kernel mutual information is inversely proportional to the product of

source and target distance.

(6.5) KE

(
D(xi,xk)

λ
,
D(xj,xl)

λ

)
= exp−

(
D(xi,xk) ∗D(xi,xl)

2λ2

)

(6.6)
δ

δλ
KE =

(
D(xi,xk) ∗D(xi,xl)

λ3

)
exp−

(
D(xi,xk) ∗D(xi,xl)

2λ2

)
Finally, I consider a kernel whose role is to combine information from multiple kernels and distance

functions. A product dyadic kernel is constructed by multiplying mutual information values returned

by a set of factor kernels, each with their own associated distance functions and λ values. In

section 6.4 I present results showing that a product kernel provides better prediction accuracy than

any singular kernel in our interfirm network dataset.

6.3.1 Inference and training for spatial correlation

Having specified a spatial structure of mutual information, we can view each training sample m′ij

as an outcome containing information about not only pij but all other (and especially nearby) link

likelihoods. We can then estimate marginal probabilities for each mij in the test data by iterating

over the data in the training set. I chose the conjugate prior Beta distribution for pij so that its
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posterior expectation after observing training data is essentially a weighted average of training link

values, where the weights are determined by the kernel function.

(6.7) P (mij | xi,xj) = E(pij |M ′,xi,xj, λ) =

∑
k,lm

′
kl

n∗(n−1) +
∑

k,lm
′
kl ∗K

(
D(xi,xk)

λ ,
D(xj,xl)

λ

)
1 +

∑
k,lK

(
D(xi,xk)

λ ,
D(xj,xl)

λ

)
Because we directly inspect training data, our inference equation contains only one unknown

parameter, the bandwidth λ. Bandwidth can be intuitively interpreted as the scale of the distance

function, but in my model it plays an an important secondary role in determining relative strength

of the prior. As bandwidth approaches zero, the density prior and the presence or absence of a

spatially identical dyad in the training data become the sole determinants of link probability. As

bandwidth approaches infinity, the weighting of all dyads in the training dataset become equal,

and the link probability converges once again toward the training graph’s density. At each of these

extremes we have ignored almost all spatial information, so we must instead search for a value of

λ which utilizes X optimally.

Optimizing λ can be accomplished by maximizing the likelihood of the training data. Since

the probability of any particular graph realization M′ is vanishingly small, the optimization is best

conducted in log-space for numerical stability.

λ̄ = argmax
λ

P (M′ | X, λ)(6.8)

= argmax
λ

logP (M′ | X, λ)(6.9)

0 =
δ

δλ
logP (M′ | X, λ̄)(6.10)

=
δ

δλ

∑
i,j

logP (mij | X, λ̄)(6.11)

=
∑
i,j

P ′(mij | X, λ̄)

P (mij | X, λ̄)
(6.12)

In general there is no closed form solution for λ̄ satisfying the above, but I have chosen kernels

such that both the marginal distributions and their derivatives with respect to λ are available and

convex. As a result, we can choose from a variety numerical methods to approximate λ̄. For the

experiments reported in this paper, we conducted an initial bound search to find an interval on

λ that enclosed the optimum, and then used binary search to reach an arbitrary precision. We

chose this to ensure a consistent level of accuracy while bounding the number of search iterations
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in our experiments. Gradient descent methods might provide a more efficient solution in practical

applications.

6.3.2 Fast Approximation

From equation 6.7, we can see that computing the marginal probability of even a single link re-

quires iterating through every dyad in the training data, resulting in temporal complexity O(n2).

To calculate AUC, we must compute the marginals for every dyad, at a complexity of O(n4). Es-

timation of λ is more expensive still, since it must complete the entire O(n4) inference loop each

time the derivative is calculated on an unknown number of iterations. Poor scalability is a common

drawback to nonparametric models, and this one is no exception. Each time period of our interfirm

network contain over 1000 nodes, making exact inference to slow for us to compute a wide range

of experimental configurations.

One potentially wasteful aspect of the precise inference of P (mij) is that it requires computation

time incorporating information from dyads between nodes very distant from i and j, which con-

tribute minutely to the local distribution. A sensible approximation would iterate only over nearby

dyads for which K is high. We cannot actually consider all prospective dyads without incurring the

same O(n2) cost as the precise method. However, the monotonicity of our kernel functions allows

us to find a population of high-K dyads by pairing nodes in the local neighborhoods of i and j

respectively. Choosing a size s, we can determine local neighborhoods N(i) and N(j) by sorting

potential neighbors in O(n log n) time. Approximate inference is then accomplished by iterating

over neighborhood pairs only, for a total cost O(n log n+ s2)

(6.13) P̄ (mij | xi,xj) =

∑
k,lm

′
kl

n∗(n−1) +
∑

k∈N(i)

∑
l∈N(j)m

′
kl ∗K

(
D(xi,xk)

λ ,
D(xj,xl)

λ

)
1 +

∑
k∈N(i)

∑
l∈N(j)K

(
D(xi,xk)

λ ,
D(xj,xl)

λ

)
In practice, I calculate the entire neighborhood function N prior to training (O(n2 log n)), and

store it at a spatial cost O(ns). As a result the total cost of training is reduced to O(n2 log n+in2s2),

where i is the number of iterations required to maximize λ. Afterwards, the marginal cost of

inference of a link probability between two known nodes is O(s2). A query regarding a node not

in the training set, such as that of a company entering the network in the second timeframe of the

link prediction task, must still compute the neighborhood of that new node.

The product kernel described in the preceding section poses a special challenge with respect to

this optimization technique, because each factor kernel may apply a different distance function and

therefore a different local neighborhood for each node. To select a single neighborhood, I union the
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neighborhoods for each specific distance function. If the result is larger than s, we select the top s

as those with the smallest bandwidth adjusted sum of distances,
∑

D
D(i,k)
λD

.

Several more trivial implementation tricks had significant impact on our algorithm’s speed.

Memoizing graph density and expensive distance calculations such as great circle distance between

latitude and longitude performance greatly accelerated both neighborhood computation and kernel

computation. Inference can also be parallelized trivially by accumulating different blocks of the

summations in the numerator and denominator of equation 6.7 in different threads.

6.3.3 Distances

In our experiments I consider three distances derived from the company attributes of our interfirm

network. They are selected in part with our expectation that they contain information regarding

the linkage patterns in the network, and in part because they demonstrate three types of distance

function which can be applied via the method above.

The first, geospatial distance (DGEO), is derived from the addresses of company headquarters

provided in company filings2. I applied a geocoder [3] to determine the latitude and longitude of the

address. The distance between two points is the great circle difference, measuring the length of the

minimal path along the surface of the Earth. The bandwidth computed for this distance function

for either kernel function corresponds to the distance at which correlation in link likelihood drops

by a certain amount.

DGEO(x,y) = 6371 km ∗ 2 arcsin

(√
sin2(

xlat − ylat

2
) + cosxlng ∗ cos ylng ∗ sin2(

xlng − ylng

2
))

)

The capitalization distance DCAP measures separation in an abstract one-dimensional space

where each company’s coordinate is its market capitalization. In the dataset market capitalization

follows roughly a power law distribution, with a large percentage of total market capitalization

being possessed by a few companies whose values are several orders of magnitude larger than

the average. This prompted some consideration of the distance function. Since our kernel function

imposes symmetry in information content across the distance function, adopting a simple arithmetic

distance would imply that linking behavior is as similar between a $1 million company and a $100

2Headquarters location is a far from perfect proxy for the geographic activities of firms, which may have varying

levels of geograpic diffuseness. For example, saying that US Steel’s business activities are concentrated in Pittsburgh,

PA may be more accurate than suggesting that McDonald’s Corporation’s are focused in Oak Brook, IL. However,

in spite of this diversity, many regulatory and economic analysis regimes resort to a pinpoint specification of location

when analyzing them.
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million company as it is between a $1 billion company and a $1.1 billion dollar company. I chose

instead to adopt a logistic distance, which assumes equal similarity between companies separated

by the same multiple.

DCAP(x,y) =| log
ycap

xcap
|

The sector distance DSEC is a categorical distance based on the top-level market sector attribute

identified in the Revere dataset. Examples correspond to standard industry classifications such as

“energy”, “telecommunications”, or “information technology”. The distance function itself is a

simple binary check on whether the two companies share a sector.

DSEC(x,y) = I(xsec = ysec)

Sector distance demonstrates the degree to which our nonparametric approach can derive an ex-

pressive model from relatively simple assumptions. DSEC can provide only 3 distinct inputs to a

dyadic kernel function.

1. If source sectors and target sectors match for both dyads, shared information will be highest,

corresponding to the model “link probability is determined by source and target sector”. In

this way the nonparametric model can simulate a block modeling approach.

2. If only source or only target sectors match, sharing will be lower, corresponding to the model

“average out degree in the source sector and average in degree on the target sector determine

link probability”.

3. The lowest information sharing occurs when neither source or target match, corresponding

to the model “link probability is determined by network density”.

The ordering of these models is fixed by the distance function, but their relative weight is determined

by the kernel function and the learned bandwidth λ: a low bandwidth gives greatest significant

to the pseudo-block modeling performed in the first case, whereas a high one weights the models

equally.

6.4 Experimental Results

6.4.1 Scoring link prediction

[74] introduced a convenient framework for comparing approaches to this problem, in which which

each is represented as a scoring function responsible for outputting potential of links in order of
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descending likelihood. Using the order rather than the scores themselves in evaluating a scoring

function avoids issues of comparing the normalization and prediction confidence of various ap-

proaches. Under this operationalization, the data mining community has evaluated a wide variety

of scoring functions based on attributed data and relational structures [68] [75] [45] [48]3.

The probabilistic framework adopted above for spatial models fits naturally into this paradigm,

since the likelihood L(mij) is itself a scoring function. For notational convenience, we assume that

the nodes and inter-node distances remain constant across all time periods, and represent changing

network structure with the matrix valued, time domain function M(t). The scoring function takes as

input a relation matrix M(t) and outputs a list of node pairs in descending order of P (mij(t+ 1)).

S : {0, 1}n×n → {(i1, j1), (i2, j2), . . . (in∗n, jn∗n)}

In some cases scoring functions are evaluated by drawing a fixed number of predictions and

measuring prediction accuracy. We instead follow [85] in measuring prediction accuracy via the

area under the response curve (AUC), which can be calculated via the formula above. The most

intuitive description of this statistic is that it measures how many pairs of dyads in which the first

dyad is linked at t+1 and the second is not are output in the correct order by the scoring function.

AUC(S) =

∑
{(i,j),...(k,l)}∈S(M(t))mij(t+ 1) ∗ (1−mkl(t+ 1))

| i, j : mij(t+ 1)) = 1 || k, l : mkl(t+ 1)) = 0 |

A closely related problem to link prediction is the identification and repair of missing data.

Perfectly measuring relations is impossible in many settings and for many relations of interest, and

many measures used in analysis of network data are sensitive to even relatively small error rates

in sampling. I consider a specific error model in which real links are omitted at a fixed rate r. We

can approach missing data detection via the framework above by interpreting the observed data as

a noisy representation of the real data, in the same way that today’s network is a noisy conveyor

of information about tomorrow’s. In the experiments in the following selection, I select a rate

parameter and construct a sample of the network that randomly omits links with that probability

(for convenience we leave the nodeset constant). I then conduct model training with the sampled

graph, and calculate AUC by predicting links in the full graph.

3A direct comparison between these methods is impossible, as they use different types of data in predicting link

formation. For example, Gilbert and Karahalios use frequency data for a variety of tie interactions in predicting

future tie strength, while Leskovec’s method is designed to predict both positive and negative associations. They are

grouped here for their similarity in scoring criteria rather than comparable input / output.
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To unify notation for link prediction and missing data detection in the following section, I adopt

the notation that we are modeling the distribution P (M |M′), where M′ is the training network

and M the test network.

6.4.2 Experimental Setup

I followed a box design, conducting experiments in every combination of the following parameters.

• Distance - either geospatial, capitalization or sector, plus product indicating the use of a

product kernel to apply all 3.

• Kernel - either Gaussian or exponential (in the case of a product distance, all factors use the

same kernel function).

• Task - Missing data detection with omission rate parameters r ∈ {5%, 10%, 15%, 20%}, or

link prediction.

• Neighborhood size of s ∈ {15, 20, 25, 30}

I ran at least 5 samples of each of the combinations above, keeping track of run times, AUC

accuracy, and λ values. We distributed runs evenly between the 12 quarterly snapshots in the

missing data task, or 11 adjacent pairs in the case of the link prediction task. All simulations were

run on the same desktop PC, which utilized a 2.67 gHz Intel i7 CPU (experiments were single-

threaded for consistent runtime analysis) with 6 gb of RAM. The following sections present the

results in various aggregations to demonstrate the impacts of various parameters.

6.4.3 Impact of Approximation

In general, I expected use of larger neighborhoods to increase both runtime and performance.

My experiments confirmed both hypotheses. Figure 6.3 summarizes the distribution of training

times training times for a geospatial distance model. The mean training time grows quadradically

with neighborhood size. The two outliers at neighborhood sizes 25 and 30 may be the result of

experimental error, caused by an external process on the experimental machine.

Figure 6.4 paints a slightly more complex picture regarding the effect of neighborhood size on

prediction accuracy in the missing data experiment. Increasing neighborhood size always improves

performance, but to varying degrees depending on the distance function. The market capitaliza-

tion model was most sensitive to neighborhood size, producing an AUC significantly lower than
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the sector based model at small neighborhood sizes, but superior performance with large neighbor-

hoods. This suggests that researchers applying our nonparametric prediction technique should test

sensitivity for their distance function before selecting a neighborhood size.

Figure 6.3: Training time by neighborhood size. Samples include exponential and Gaussian kernel

functions for Geospatial distance measure on missing data experiments.

6.4.4 Robustness to Missing Data

One would expect that increasing the rate at which edges are deleted from the data would reduce

our accuracy in detecting those deletions, since less information is available to train the model.

Figure 6.5 illustrates that there is in fact a surprising resilience to such increases. Although all

distance functions had a lower mean AUC at 20% than they did at 5%, along the rest of the

interval accuracy differentials were within even optimistic error margins (1
2 standard deviation).

This stability to omitted data raises hopes that a nonparametric model trained on noisy data

might be useful for applications beyond missing data detection. I view this as one of most attractive

features of the technique.
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Figure 6.4: Average AUC by neighborhood size on missing data experiment, using 3 distance

functions with exponential kernel, and product kernel of same. Error bars are 1
2 standard deviation

for clear visibility.
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Figure 6.5: Average AUC by edge deletion rate on missing data experiment, using 3 distance

functions with exponential kernel, and product kernel of same. Error bars are 1
2 standard deviation

for clear visibility.



134 CHAPTER 6. SPATIALLY EMBEDDED LINK PREDICTION

6.4.5 Comparative Performance

Table 6.2 summarizes the performance of each distance function and kernel at each of performance

task. The first and most general observation is that the average AUC for most methods is compet-

itive with other reported link prediction techniques such as those mentioned in [74] and [49]. The

outlying exception is that weak performance of DGEO based models on the missing data detection

task. This is made more interesting by the same distance function’s strong performance on link

prediction task. One possible explanation is that stable core of edges which exist in all time periods

is highly entropic with respect to location of source and target nodes, but that new link additions

are clustered in the areas best described by the geospatial model.

The choice of kernel seemed to make no difference whatsoever in performance accuracy of each

individual distance function, in spite of choosing substantially different optimal bandwidths. This

result is consistent with the literature on nonparametric density estimation, where it is known that

different kernel functions tend to produce substantially different predictions only for points near

the edge of the sampled space. However, usage of the Gaussian kernels proved slightly preferable

as the basis for a product kernel, performing almost one standard deviation better than product

kernels constructed from exponential factors.

Of the three individual distance functions, DCAP performed best across tasks (although, as

we noted earlier, this performance declines significantly when smaller neighborhoods are used).

However, all three of the individual distances were dominated by the product kernel, which produced

an AUC exceeding .8 on every task. Since the product kernel can only aggregate the structural

insights encoded in the factors, this suggests that the information garnered by these distance

functions does not fully overlap. Overall, this result suggests that a product factor with a “kitchen

sink” of distance functions might be an acceptable approach to exploring a new link dataset if

sufficient computing power were available.

The relative accuracy of these techniques provides some interesting insights into the structure

of our interfirm network. For example, the high AUC scores associated with DCAP support the

statement “companies of certain specific sizes tend to do business with companies of certain other

specific sizes”. Intuitively, we might imagine this relationship exists between the largest and smallest

companies in our dataset, as small companies often either require the services of or sell services

to a small set of large corporations. We tested this intuition by querying a trained model for the

probability of a relationship between a US$ 20 M company and a US$ 500 M and received a link

probability just under 0.5% – significantly higher the the density which would be the null model.
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Distance

Gaussian Exponential

MD LP
λ̄

MD LP
λ̄

AUC σ2 AUC σ2 AUC σ2 AUC σ2

DGEO .572 .030 .817 .074 2706.054 .571 .029 .817 .074 2435.872

DCAP .774 .019 .835 .029 1.302 .773 .020 .835 .029 0.167

DSEC .731 .021 .792 .014 0.396 .729 .016 .788 .014 0.323

Product .831 .019 .877 .020 N/A .815 .020 .863 .007 N/A

Table 6.2: Prediction performance by distance and kernel. Product refers to product kernel whose

factors include each of the above distance / kernel pairings. MD and LP refer to missing data and

link prediction experiments respectively. AUC, σ2 and λ̄ report average and standard deviation

of AUC and average bandwidth parameter in at least 5 trials with the specified distance and

kernel. All experiments were performed with neighborhood size s = 30. Missing data experiments

performed with rate r = .15.

6.5 Discussion

This chapter presented a nonparametric method for discovering a range of structural patterns in

a graph associated with an embedding space on which a metric distance function can be defined.

Models based on this method can be queried for the marginal probability of any particular dyad

being linked, which can be the basis for applications where missing links are detected or nascent

links are predicted. The method generalizes two previously explored classes of spatial model, those

based on inverse distance and those based on spatial clustering of nodes. By defining distance

functions based on scalar or categorical attributes, one can also apply the technique to attribute-

based linked prediction, an active area of research in several communities.

The motivating setting for the method was analysis of an interfirm network in which I was

unsure whether previous results regarding spatially embedded interpersonal social networks could

be directly applied. I hypothesized that space, market capitalization, and industrial sector played

roles in determining network structure, but wanted to make minimal assumptions about the exact

nature of their effects. In addition to interfirm networks, there exist many other “networks of social

origin” whose structure may or may not conform to structural models that have proven useful in

other settings (i.e. homophily, power law or preferential attachment models). Examples include

structured data produced by online social mechanisms or distributed sensor mechanisms, which

capture previously difficult to detect types of social behavior. In settings like this, where prior

assumptions should be minimized, nonparametric methods like this one can play a significant roll.
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In the context of our interfirm network, I was able to use geospatial, market capitalization and

industrial sector data to produce an ordering on probabilities for missing or predicted links that far

exceeded in accuracy one produced by chance or by trivial prediction methods, and was competitive

with results from other methods and datasets on the same task. The ability to predict nascent

links in the economic network is of potential interest to companies making strategic decisions and

investors trying to understand the risk profiles that will be created by new relationships. However,

it is doubtful whether the results presented here are accurate enough to be useful in that context.

By comparing results from different distance functions, we can draw some interesting conclusions

about the structure and dynamics of the economic network. The fact that a distance measure

based on market capitalization outperformed other distance metrics suggests that firm size may be

a more important in determining relationships that industrial sector or geographic location. One

possible explanation for poor performance of geospatial distance is that globalization has reduced

the relevance of spatial distance for US countries. If a similar network were available for American

companies during the industrial revolution, or for a modern-day country whose economy is based

around physical goods, it would make for an interesting comparative analysis. The significant

improvement in performance of the geospatial distance when conducting link prediction rather

than missing link detection suggests that the links being formed in the last 6 years are much more

spatially structured than the network as a whole. Finally, the fact that a product kernel was able to

combine information from each of the distance functions into a superior prediction suggests that at

least two of the three distances contain valuable, distinct information about the network structure.

Scalability to large networks remains a major challenge for my algorithm, but which may be

overcome by further study. One potential innovation would be to adapt the neighborhood size

s to distribution of nearby nodes, stopping when a certain confidence was reached. The search

for local neighborhoods could be made more efficient by application of KD-trees, as is routinely

done for k-nearest-neighbor algorithms [55]. Finally, link probability could be interpolated from a

few sampled points rather than being computed from scratch for each new point. This technique

would require knowing an appropriate sampling scale in advance, but could detect unusual spatial

topologies.

With enough data and computation time, dyadic kernel estimation can fit any pattern that

can be described by an inverse distance or spatial clustering model. However, that does not mean

it is preferable for all datasets. In addition to the scalability issues described in the preceding

paragraph, the dyadic kernel method is dependent on having data points nearby to both sides of

each dyad being predicted.

If attempting to generalize characteristics of a relationship from one region to another, it may be
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that only inverse density models can be applied. As a process for selecting between the three classes

of spatial models I discuss, a practitioner might begin by plotting the frequency of dyads at various

distances. If the plot is dominated by a monotonic effect, inverse distance might be an appropriate

model. If the plot is multimodal, the data should be further investigated for susceptibility to

clustering. This could be done by a visual assessment, or more consistently by training a spatial

clustering model and assessing the entropy of the cross-cluster relationship matrix. If neither of

these models is a good fit, dyadic kernel density can be used as a more general final step. However,

if computation time is not an issue and the region of interest is well covered by sample data, dyadic

kernel density (potentially with a product kernel if there are several embedding spaces for the

kernel) can be used as a robust first step.

One line of potential furtherance of dyadic kernel methods would be to study the breadth of its

applicability, by analyzing a wider range of datasets and comparing results to those produced by

parametric methods, particularly those that use relational statistics such as triad completion. A

second would be to adapt innovations from other nonparametric techniques to our dyadic setting.

One example of this is the concept of an adaptive kernel, where the bandwidth varies by region of

the embedding space. An adaptive kernel might reduce the need for a priori judgements regarding

the distance function, such as our decision to perform the market capitalization differencing in

log-space. That type of improvement – one that increases flexibility of a model and diminishes

need for prior assumptions regarding a domain, while remaining computationally tractable – is the

primary goal of this line of inquiry.
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Chapter 7

Conclusion: contributions, limitations

and themes

7.1 The human process that studies human processes

Early in the work that would become this thesis, an analyst at a government agency told me,

“Behind every well-posed question I am asked, there are a host of poorly defined ones which are

far more important.” A query to predict the destination of a particular ship might be highly

relevant for an hour or a day. That class of query might be deemed one of many priorities for

years. But the long term goal of an organization invested in a human system is to maintain a more

general situational awareness, recognizing new entities and phenomena as they become important

for understanding dynamics to which the stakeholder is sensitive.

Most human processes that accomplish this adapt a variation of the scientific method to their

goal. Individuals or organizations must persistently identify phenomena of interest, reduce them

to questions that can be operationalized in data, propose models that relate them, and assess

those models for consistency. However, while a natural scientist hopes to arrive at intransient rules

that describe their environment – including sociologists, who seek constants across the range of

human behaviors – most analysts of human systems must accept that the patterns they discover

will continuously be subsumed by new dynamics. These may be due to boundlessness, as entities

enter and leave the system and new relationships evolve. It can be caused by competition, as

entities adapt to changes brought about by their previous behavior (including interventions by the

analyst). Or the change can take place within the interlocutor, whose evolving needs and concerns

demand an understanding of different aspects of a system.

139
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Whatever its cause, transience exacts a cost on model development, as the modeller must

reserve capacity for adaptation that would otherwise be spent refining established models. In most

organizations, adaptability rests, expensively, in the human parts of the process. Computational

resources are brought to bear mainly in the final stages of analysis, where entities and relationships

of interest have already been identified, and the data within which to operationalize them has been

established. The algorithms presented in this thesis were intended to enable computational analysis

incrementally earlier in the process, where the basic structural regularities of a system and data of

interest have been established, but the exact entities and relationships of interest have yet to be

determined (or must be consistently re-determined).

7.2 Relaxed grouping in networks

Many human behaviors are difficult to explain without appealing to the notion of communities,

indirect associations that can influence patterns of interaction as strongly as pairwise relationships.

Communities and their effects have been often verified in targeted experiments and surveys, but

detecting them consistently in more general data remains an area of active research. In many ways,

communities exemplify the human system challenges listed above: they form, mutate, and devolve

without announcement, sometimes exist without the conscious knowledge even of participants, and

in some cases react to attempts to label and characterize them.

In chapter 4, I argued that while sociological literature shows that individuals participate in

many communities with varying strength of association, and clustering literature has presented

a variety of methods for finding overlapping groups, the latter are rarely applied to detection of

cohesive communities within social networks. I introduced a latent mixture model, FOG, whose

parameters describe the memberships of Fuzzy, Overlapping Groups. The instances generated by

the model are multi-entity observations, such as the attendance lists of events. To adapt them to

network data, I proposed a random-tree based preprocessor, interpretable as a contagion process

simulation, which generates multi-entity relations that sample the structure of the overall graph. I

showed that fitting the model with a simple hierarchical clustering algorithm produced interpretable

groups consistent with ethnographic observations on two seminal data sets from sociological studies

on communities.

The hierarchical clustering method used in my initial validation of FOG had undesirable proper-

ties including poor scalability, sub-optimal results due to greedy clustering, and the need to specify

the number of latent groups exogenously. I introduced a series of expectation maximization algo-

rithms ameliorating each of the above. Because the algorithms admit no formal guarantees about
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runtime or goodness-of-fit, I compared their performance empirically on simulated data in which

the true underlying grouping was known. While both the best runtimes and the most optimal

fits were achieved by algorithms with foreknowledge of the true number of groups, competitive

performance on both criteria was reached by the most advanced algorithm, α-FOG-residual, which

inferred the number of groups from data.

Outside of the community detection task, the algorithmic results explored several general topics

in clustering. I compared hard and soft variants of expectation maximization. Based on the hard

variant, I formally defined the CEM update schedule for expectation maximization algorithms, a

play on the previous ECM classification which updates subsets of the expectations rather than

maximizing subsets of the parameters. I defined a class of distributions with an unknown number

of latent entities in which CEM updates could be updated efficiently. Finally, I introduced the

REM algorithm, which prioritizes important updates in such distributions, and is the basis of the

relatively high performance of the α-FOG-Residual algorithm.

The principle limitations in my work on community detection come from the difficulty in iden-

tifying a ground truth against which to validate results. In my experiments I relied on detailed

ethnographic surveys and synthetic data, meaning that my work risks participating in confirmation

bias or not generalizing to structures in the real world that differ from my synthetic data generation

techniques. “True” community structure is inherently hidden, but the FOG algorithms could po-

tentially be further validated in relation to specific prediction tasks with observable results, in which

fuzzy, overlapping groups are an intermediate variable. A second area needing further exploration

is the detailed impact of network sampling method on discovered groups.

A final limitation is the non-treatment of graphs with multiple edge and node-types. As dis-

cussed in text, if the graph is unimodal but multi-relational, it may be sufficient to adapt the

link-generation algorithm to generate bimodal link data for multigraphs. In a multi-modal graph,

it might be more interesting to consider the construction of multi-modal links, with groups for each

type of node contributing to each link.

Notwithstanding these concerns, the empirical results regarding residual-prioritized clustering

and the ease with which it can be adapted to distributions for specific domains should make it an

appealing approach for a variety of latent entity detection problems.
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7.3 Plans and places as hidden entities

A second challenging category of human behavior is the organization of their movement patterns

through space. A variety of constraints and objectives push us towards consistent habits when it

comes to the schedules of our destinations and the routes we take to get there, but like community

structure these habits are often not explicitly enumerated, and change over time. Detecting these

patterns is useful for goal prediction and deviation detection, with all their related applications.

In chapter 5, I studied this problem in the context of data capturing the paths of shipping vessels

between ports in the English Channel.

In my initial effort, I modeled each ship’s trajectory as a three layer hidden markov model. The

bottom layer contained observed locations, the middle contained hidden categorical state variables

which effectively discretized the space, and the third contained hidden plan variables intended to

carry information about long term objectives across many time steps. I proposed an expectation-

maximizing belief propagation (EMBP) algorithm for inferring the hidden states, which combined

the usually distinct steps of model training and inference within a factor graph. Drawing on the

results of the previous chapter, I considered both synchronous and asynchronous update schedules

for the variable and parameter assignments within the graph. Comparing the techniques in their

ability to predict the location of a ships next landfall, the asynchronous algorithm converged much

faster and produced much more accurate estimates. However, neither algorithm produced a degree

of accuracy suitable for most applications. This was in part because each was initialized with a

fixed number of latent locations and, due to greedy iteration, ended up using a small subset and

producing a model with very low spatial resolution.

To improve performance and explore further algorithmic problems, I considered a simplified

model with a fixed spatial resolution, but where the number of latent locations was inferred from

data. To make the model tractable, I proposed a new class of factor graph specifying structure not

only in the mutual information between variables but between factor parameters as respects variable

values. The additional structure, which is based on the CEM-tractable clustering distributions

from the previous chapters, admits the use of a new belief propagation algorithm, REM-BP, based

on the residual clustering of the previous chapter. I compared REM-BP with a similar algorithm

performing random updates, and verified that, in spite of the added expense involved in maintaining

a prioritized update schedule, REM-BP converged faster and to more compelling models than either

the random schedule or the previous algorithms.

Within the path prediction task, and more generally the domain of understanding shipping

patterns, the least satisfying aspect of the models I presented is the discretization of space using
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centroids. This partitions space into Voronoi diagram, in that were we to exclude other factors

observations would be assigned to states based slowly on their closeness to the state’s center. While

this might be appropriate for processes involving spatial diffusion, it’s my belief that traffic patterns

are better modeled as a latent graph, in that ships may be located either at particular waypoints or

on thin filaments in between. This is a non-strict partitioning of space, admitting crossing filaments

such as those clearly observed in shipping traffic. I spent significant unreported effort adapting the

approach of [43] to the factor graph model, but was ultimately unable to overcome difficulty in

initializing the model brought about by a proliferation of trivial local maxima. This underscores a

remaining challenge in the generalizability of these EM-based techniques, namely that they are far

more robust for some distributions of latent entities than others. A profitable area for future work

would be further classifications of which distributions are “well-behaved”.

Notwithstanding these limitations, REM-BP is to my knowledge the first algorithm aimed at

tractable unsupervised inference within general factor graphs where variables hold an unknown

number of latent states. It’s my hope that it may be applicable in other domains where factor

graphs are prevalent, such as image segmentation.

7.4 Pairwise relations in abstract spaces

A tenant of social network analysis is that relationships persist beyond individual interactions,

forming structures that shape many or all social phenomena. However, the observation that under

almost any operationalization social networks are dynamic, with links strengthening and weakening

over time, begs the question of what external structure dictates those dynamics. Communities are

one answer to this question, as are concepts of homophily, preferential attachment, structural holes,

and many others. Some of these approaches are general theories which must be instantiated with

care from application to application, but others, such as most spatial propinquity models, can be

defined in terms of specific parameters.

In chapter 6 I attempted to generalize many of these models by introducing a method which

related the location of both sides of a potential dyadic interaction within a physical or conceptual

space with the probability of that interaction taking place. In contrast to methods based purely

on distance across the dyad or clustering pre-processors, this kind of spatial correlation can detect

overlapping effects and those which promote interaction between discontinuous regions. Because

the structure of the model can better adapt to the structure of the data, it is potentially more

robust to a suboptimal choice of coordinate systems or distance functions.
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To train the model, I introduced dyadic kernel density estimation, based on previous non-

parametric techniques, which predicts propinquity based on the density of similar interactions in

observed data. Similarity is defined in terms of a dyadic kernel, which measures the shared informa-

tion between the interaction patterns of any pair of individuals with that of a second pair. I show

how to construct kernels from several kinds of distance functions, including those for geographic,

ordinal, and categorical spaces.

I validated the approach in a link prediction task, where I attempted to predict missing data and

future interactions within a business-to-business network of companies linked by supply chain rela-

tionships. After showing that the dataset likely contained effects necessitating a spatial correlation

model, I compared models built around several kernels and several types of metadata about each

company, including spatial coordinates of headquarters, market capitalization, and an categorical

industrial sector classification. The prediction accuracy of each model was better than random,

but capitalization and sector proved significantly more predictive of propinquity than headquarters

location.

Given the presence of at least two significant effects, it seemed wasteful to choose only one of

them in constructing a model. To remedy this, I showed how to construct a dyadic product kernel

that would make use of dyadic distance information in several different spaces to predict propinquity.

As expected, this model outperformed any of the individual models, generating accuracy very

competitive with link prediction results using different algorithms (and, unfortunately, datasets).

Like other nonparametric methods, dyadic kernel density estimation suffers from a tension

between requiring significant data for accuracy and scaling very poorly with additional data. While I

was able to partially ameliorate this with an approximation method using only nearby nodes during

estimation, the algorithm as given would remain intractable for many datasets. One direction

for further improving this performance would be the integration of the modeling algorithm with

efficient data structures for spatial proximity queries, such as the spatial kd-tree or indexing methods

based space-filling curves. These could be trivially applied to speeding the approximation method

presented in this paper, but could be further integrated by associating propinquity estimates with

more abstracted levels of the data structure.

The main strength of dyadic kernel density estimation is that, when tractable, it can be applied

to networks with several associated spatial variables with minimal model adaptation or assumed

parameters. While some exploratory analysis is recommended to select a distance function or

projection (for example, logistic) most aligned with kernel assumptions of symmetry and locality

are most appropriate, the bandwidths of each kernel and of the product kernel can be learned

automatically.
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7.5 Bringing the methods online

A major area for future research in all three problem areas is the adaptation of the algorithms

I’ve presented to giving online results for streaming input. In the case of FOG, this could mean

tracking the fission and fusion of overlapping groups as new link observations come in. In the case

of the path prediction algorithms, this could mean adapting to new traffic patterns as they are

observed for the first time. And in the case of the supply chain link prediction, this could mean

incorporating new link observations to the prediction of future contract initiations.

The iREM and iREM-BP algorithms I used for inference in α-FOG and unsupervised factor

graphs should be especially adaptable to online data. New latent variables could be initialized

as the associated observed variables come in, and placed on the same queue to receive updates as

previous variables. The prioritization of the queue will naturally favor updates to new data over old

data that is relatively near equilibrium. For the dyadic kernel methods, it seems likely intractable to

dynamically adjust kernel bandwidth to account for new data. However, if bandwidth is constant,

adding new data is simply a matter of updating the structure that identifies nearest neighbors for

a proposed point.

Two related challenges for online variants of the iREM and iREM-BP algorithms are (1) the

propensity to get stuck in local minima, and (2) the assumption of stationarity in latent variables.

Over time, both problems could make the algorithms less and less sensitive to new data as time

went on. One potential solution for this would be some sort of time boxing or time decay, which

would remove or underweight factors associated with observed and latent variables from long-past

observations. Another solution would be temporal validation, continually making predictions for

observed variables as they come in, and explicitly throwing away old data and re-learning the model

when accuracy dropped below a certain point. The former solution would account well for situations

in which there was a continuous drift in model parameters, and the latter would be preferable if

there were punctuated regime shifts.

7.6 Advice for practitioners

For a practitioner trying to apply the algorithms in this thesis to a set of problems, the key

question to ask is: what are the hidden entities in my data? If a single type of hidden classification

is expected to explain observed data, a simple application of the iREM or iREM-infinite algorithms

described at the end of chapter 4 can be employed. If the classifications are expected to be fuzzy
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and overlapping, it may be worth applying the FOG stochastic model using that chapter’s k-FOG

or α-FOG algorithms, respectively, if the number of latent groups is known or uknown.

If there are several kinds of hidden variables, and more complex relationships between them

and the observed data, than the development of a factor graph and application of the iREM-BP

algorithms might be more appropriate. This is a relatively complex process because of the need

to model parametrically each of the relationships expected in the dataset. However, a virtue of

that process is that the enumeration forces the researcher to explicitly state the assumptions being

incorporated in the model.

Finally, if the relationships involved in the dataset are difficult to model parametrically, such

as the impact of a spatial embedding on interactions, than the dyadic kernel methods of chapter 6

may be in order. If computation time is readily available, the product kernel methodology might

be a good first step to determining which features influence link propensity in a new dataset.

7.7 Analysts and scientists

A natural tension exists between those seeking generalizable, permanent natural laws and those

attempting to extract useful summaries – however transient and contextual – from a system in

which they are a stakeholder. This is especially true when the two groups use similar terms and

technologies, and frequently involve the same people. On the analysis side, techniques which,

in pursuit of guarantees regarding truth, demand significant control of the data created or the

environment producing the data, are of little use. Analysts frequently must resort to ad-hoc

methods of pre-processing their data or make arbitrary decisions about model structure to shoehorn

their problem into existing models. On the scientific side, the threat of admitting a summary

produced less rigorously as “true” leads to understandable taboos. Modern researchers inevitably

feel these tensions both internally and externally.

New data, computational resources, and social mechanisms are tilting the balance of scientific

effort expended on transient versus intransient phenomena farther and farther towardthe transient.

Much as the next generation of English usage will be defined significantly by English speakers in

countries with another national language (whose numbers now far exceed those within the English-

primary world), this constitutes an irresistible force which will change the organization of the

scientific community and the ways in which the scientific method is applied. This can be viewed as

a risk to effective progress toward determining more fundamental aspects of human behavior, but

is certainly an extraordinary opportunity to capture new data and ideas at all levels.
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A determinant of the productivity of this change will be our ability to effectively manage and

distinguish between levels of generalizability and transience. Nonparametric and unsupervised

methods have a special roll in aiding this distinction, as they extend the vocabulary of the types

of unknown or transient phenomena we can incorporate in our models in a principled, data driven

way. Frameworks, such as probabilistic graphical models and product kernels, that can be adapted

quickly and easily to represent a variety of structural assumptions, play a significant role in the

discourse as they potentially decrease the cacophony created by method rediscovery across domains.

The algorithms presented in this thesis are an incremental step in improving the integration of these

techniques. It’s my hope that as necessity drives further developments in this area, we will find a

world of human systems data larger, but better understood and better organized than the one we

experience today.
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